Halide perovskites have emerged as promising materials for a wide variety of optoelectronic applications, including solar cells, light-emitting devices, photodetectors, and quantum information applications. In addition to their desirable optical and electronic properties, halide perovskites provide tremendous synthetic flexibility through variation of not only their chemical composition but also their structure and morphology. At the heart of their use in optoelectronic technologies is the interaction of light with electronic excitations in the form of excitons.
View Article and Find Full Text PDFSinglet exciton fission has the potential to increase the efficiency of crystalline silicon solar cells beyond the conventional single junction limit. Perhaps the largest obstacle to achieving this enhancement is uncertainty about energy coupling mechanisms at the interfaces between silicon and exciton fission materials such as tetracene. Here, the previously reported silicon-hafnium oxynitride-tetracene structure is studied and a combination of magnetic-field-dependent silicon photoluminescence measurements and density functional theory calculations is used to probe the influence of the interlayer composition on the triplet transfer process across the hafnium oxynitride interlayer.
View Article and Find Full Text PDFAlloying is a powerful strategy for tuning the electronic band structure and optical properties of semiconductors. Here, we investigate the thermodynamic stability and excitonic properties of mixed-chalcogen alloys of two-dimensional (2D) hybrid organic-inorganic silver phenylchalcogenides (AgEPh; E = S, Se, Te). Using a variety of structural and optical characterization techniques, we demonstrate that the AgSePh-AgTePh system forms homogeneous alloys (AgSeTePh, 0 ≤ ≤ 1) across all compositions, whereas the AgSPh-AgSePh and AgSPh-AgTePh systems exhibit distinct miscibility gaps.
View Article and Find Full Text PDFThe self-assembly of nanocrystals (NCs) into close-packed, ordered superlattices (SLs) is of broad, engineering interest. The coherent orientation of polyhedral nanocrystals within NC SLs enhances electronic, magnetic, and vibrational coupling, leading to a variety of emergent phenomena. Here, we show that coherent orientation of polyhedral NCs in many SLs can be understood simply by considering its effect on the conformational entropy of surface ligands.
View Article and Find Full Text PDFNanocrystal superlattices (NC SLs) have long been sought as promising metamaterials, with nanoscale-engineered properties arising from collective and synergistic effects among the constituent building blocks. Lead halide perovskite (LHP) NCs come across as outstanding candidates for SL design, as they demonstrate collective light emission, known as superfluorescence, in single- and multicomponent SLs. Thus far, LHP NCs have only been assembled in single-component SLs or coassembled with dielectric NC building blocks acting solely as spacers between luminescent NCs.
View Article and Find Full Text PDFThe interaction between excitons and photons underlies a range of emergent technologies, such as directional light emission, molecular lasers, photonic circuits, and polaritonic devices. Two of the key parameters that impact exciton-photon coupling are the binding energy of excitons and the relative orientations between the exciton dipole and photon field. Tightly bound excitons are typically found in molecular crystals, where nevertheless the angular relationship of excitons with photon fields is difficult to control.
View Article and Find Full Text PDFLayered hybrid perovskites exhibit emergent physical properties and exceptional functional performances, but the coexistence of lattice order and structural disorder severely hinders our understanding of these materials. One unsolved problem regards how the lattice dynamics are affected by the dimensional engineering of the inorganic frameworks and their interaction with the molecular moieties. Here, we address this question by using a combination of spontaneous Raman scattering, terahertz spectroscopy, and molecular dynamics simulations.
View Article and Find Full Text PDFThin ferroelectric materials hold great promise for compact nonvolatile memory and nonlinear optical and optoelectronic devices. Herein, an ultrathin in-plane ferroelectric material that exhibits a giant nonlinear optical effect, group-IV monochalcogenide SnSe, is reported. Nanometer-scale ferroelectric domains with ≈90°/270° twin boundaries or ≈180° domain walls are revealed in physical-vapor-deposited SnSe by lateral piezoresponse force microscopy.
View Article and Find Full Text PDFOrganic-inorganic hybrid materials present new opportunities for creating low-dimensional structures with unique light-matter interaction. In this work, we report a chemically robust yellow emissive one-dimensional (1D) semiconductor, silver 2,6-difluorophenylselenolate─AgSePhF(2,6), a new member of the broader class of hybrid low-dimensional semiconductors, metal-organic chalcogenolates. While silver phenylselenolate (AgSePh) crystallizes as a two-dimensional (2D) van der Waals semiconductor, introduction of fluorine atoms at the (2,6) position of the phenyl ring induces a structural transition from 2D sheets to 1D chains.
View Article and Find Full Text PDFLead halide perovskite nanocrystals (LHP NCs) are an emerging materials system with broad potential applications, including as emitters of quantum light. We apply design principles aimed at the structural optimization of surface ligand species for CsPbBr NCs, leading us to the study of LHP NCs with dicationic quaternary ammonium bromide ligands. Through the selection of linking groups and aliphatic backbones guided by experiments and computational support, we demonstrate consistently narrow photoluminescence line shapes with a full-width-at-half-maximum below 70 meV.
View Article and Find Full Text PDFColloidal nanocrystals are successfully used as nanoscale building blocks for creating hierarchical solids with structures that range from amorphous networks to sophisticated periodic superlattices. Recently, it has been observed that these superlattices exhibit collective vibrations, which stem from the correlated motion of the nanocrystals, with their surface-bound ligands acting as molecular linkers. In this Perspective, we describe the work so far on collective vibrations in nanocrystal solids and their as-of-yet untapped potential for phononic applications.
View Article and Find Full Text PDFSilver phenylselenolate (AgSePh, also known as "mithrene") and silver phenyltellurolate (AgTePh, also known as "tethrene") are two-dimensional (2D) van der Waals semiconductors belonging to an emerging class of hybrid organic-inorganic materials called metal-organic chalcogenolates. Despite having the same crystal structure, AgSePh and AgTePh exhibit a strikingly different excitonic behavior. Whereas AgSePh exhibits narrow, fast luminescence with a minimal Stokes shift, AgTePh exhibits comparatively slow luminescence that is significantly broadened and red-shifted from its absorption minimum.
View Article and Find Full Text PDFSelectively blocking undesirable exciton transfer pathways is crucial for utilizing exciton conversion processes that involve participation of multiple chromophores. This is particularly challenging for solid-state systems, where the chromophores are fixed in close proximity. For instance, the low efficiency of solid-state triplet-triplet upconversion calls for inhibiting the parasitic singlet back-transfer without blocking the flow of triplet excitons.
View Article and Find Full Text PDFTransient microscopy has emerged as a powerful tool for imaging the diffusion of excitons and free charge carriers in optoelectronic materials. In many excitonic materials, extraction of diffusion coefficients can be simplified because of the linear relationship between signal intensity and local excited state population. However, in materials where transport is dominated by free charge carriers, extracting diffusivities accurately from multidimensional data is complicated by the nonlinear dependence of the measured signal on the local charge carrier density.
View Article and Find Full Text PDFAnisotropic strain engineering has emerged as a powerful strategy for enhancing the optoelectronic performance of semiconductor nanocrystals. Here, we show that CdSe/CdS dot-in-rod structures offer a platform for fine-tuning the optical response of CdSe quantum dots through anisotropic strain. By controlling the spatial position of the CdSe core within a growing CdS nanorod shell, varying degrees of uniaxial strain can be introduced.
View Article and Find Full Text PDFApplications of two-dimensional (2D) perovskites have significantly outpaced the understanding of many fundamental aspects of their photophysics. The optical response of 2D lead halide perovskites is dominated by strongly bound excitonic states. However, a comprehensive experimental verification of the exciton fine structure splitting and associated transition symmetries remains elusive.
View Article and Find Full Text PDFSilver phenylselenolate (AgSePh) is a hybrid organic-inorganic two-dimensional (2D) semiconductor exhibiting narrow blue emission, in-plane anisotropy, and large exciton binding energy. Here, we show that the addition of carefully chosen solvent vapors during the chemical transformation of metallic silver to AgSePh allows for control over the size and orientation of AgSePh crystals. By testing 28 solvent vapors (with different polarities, boiling points, and functional groups), we controlled the resulting crystal size from <200 nm up to a few μm.
View Article and Find Full Text PDFThe use of two-dimensional (2D) materials in next-generation technologies is often limited by small lateral size and/or crystal defects. Here, we introduce a simple chemical strategy to improve the size and overall quality of 2D metal-organic chalcogenolates (MOCs), a new class of hybrid organic-inorganic 2D semiconductors that can exhibit in-plane anisotropy and blue luminescence. By inducing the formation of silver-amine complexes during a solution growth method, we increase the average size of silver phenylselenolate (AgSePh) microcrystals from <5 μm to >1 mm, while simultaneously extending the photoluminescence lifetime and suppressing mid-gap emission.
View Article and Find Full Text PDFSubstitutional metal doping is a powerful strategy for manipulating the emission spectra and excited state dynamics of semiconductor nanomaterials. Here, we demonstrate the synthesis of colloidal manganese (Mn)-doped organic-inorganic hybrid perovskite nanoplatelets (chemical formula: L[APbMnBr]PbMnBr; L, butylammonium; A, methylammonium or formamidinium; (= 1 or 2), number of PbMnBr octahedral layers in thickness) a ligand-assisted reprecipitation method. Substitutional doping of manganese for lead introduces bright (approaching 100% efficiency) and long-lived (>500 μs) midgap Mn atomic states, and the doped nanoplatelets exhibit dual emission from both the band edge and the dopant state.
View Article and Find Full Text PDF