The organic pesticide rotenone is a neurotoxin suspected to cause Parkinson's disease (PD) symptoms by selectively targeting and compromising the survival of dopaminergic neurons. Rotenone in rodent models reproduces key features of human PD by impairing the mitochondrial electron transport chain, leading to intracellular alpha-synuclein aggregates and functional impairments typical for PD. The present study characterized the dose-response relationship of standard rotenone concentrations in motor impairments in a rat model.
View Article and Find Full Text PDFDrug Discov Today
March 2004
Current treatment options for neurodegenerative diseases are limited and mainly affect only the symptoms of disease. Because of the unknown and probably multiple causes of these diseases, they cannot be readily targeted. However, it has been established that apoptosis contributes to neuronal loss in most neurodegenerative diseases.
View Article and Find Full Text PDFRecent studies have suggested glaucomatous loss of retinal ganglion cells and their axons in Alzheimer's disease. Amyloid beta peptides and phosphorylated tau protein have been implicated in the selective regional neuronal loss and protein accumulations characteristic of Alzheimer's disease. Similar protein accumulations are not present on glaucomatous retinal ganglion cells.
View Article and Find Full Text PDFControversy has surrounded a role for apoptosis in the loss of neurons in Parkinson's disease (PD). Although a variety of evidence has supported an apoptotic contribution to PD neuronal loss particularly in the nigra, two factors have weighed against general acceptance: (1) limitations in the use of in situ 3' end labeling techniques to demonstrate nuclear DNA cleavage; and (2) the insistence that a specific set of nuclear morphological features be present before apoptotic death could be declared. We first review the molecular events that underlie apoptotic nuclear degradation and the literature regarding the unreliability of 3' DNA end labeling as a marker of apoptotic nuclear degradation.
View Article and Find Full Text PDF