Publications by authors named "William T McClintic"

Botulinum neurotoxin (BoNT) is a potent protein toxin that causes muscle paralysis and death by asphyxiation. Treatments for symptomatic botulism are intubation and supportive care until respiratory function recovers. Aminopyridines have recently emerged as potential treatments for botulism.

View Article and Find Full Text PDF

Abstract: In biology, heterosynaptic plasticity maintains homeostasis in synaptic inputs during associative learning and memory, and initiates long-term changes in synaptic strengths that nonspecifically modulate different synapse types. In bioinspired neuromorphic circuits, heterosynaptic plasticity may be used to extend the functionality of two-terminal, biomimetic memristors. In this article, we explore how changes in the pH of droplet interface bilayer aqueous solutions modulate the memristive responses of a lipid bilayer membrane in the pH range 4.

View Article and Find Full Text PDF

Hybrid membranes built from phospholipids and amphiphilic block copolymers seek to capitalize on the benefits of both constituents for constructing biomimetic interfaces with improved performance. However, hybrid membranes have not been formed or studied using the droplet interface bilayer (DIB) method, an approach that offers advantages for revealing nanoscale changes in membrane structure and mechanics and offers a path toward assembling higher-order tissues. We report on hybrid droplet interface bilayers (hDIBs) formed in hexadecane from binary mixtures of synthetic diphytanoyl phosphatidylcholine (DPhPC) lipids and low molecular weight 1,2 polybutadiene-b-polyethylene oxide (PBPEO) amphiphilic block copolymers and use electrophysiology measurements and imaging to assess the effects of PBPEO in the membrane.

View Article and Find Full Text PDF

Macromolecular crowding is known to modulate chemical equilibria, reaction rates, and molecular binding events, both in aqueous solutions and at lipid bilayer membranes, natural barriers that enclose the crowded environments of cells and their subcellular compartments. Previous studies on the effects of macromolecular crowding in aqueous compartments on conduction through membranes have focused on single-channel ionic conduction through previously formed pores at thermodynamic equilibrium. Here, the effects of macromolecular crowding on the mechanism of pore formation itself were studied using the droplet interface bilayer (DIB) technique with the voltage-dependent pore-forming peptide alamethicin (alm).

View Article and Find Full Text PDF

Polymer-stabilized liquid/liquid interfaces are an important and growing class of bioinspired materials that combine the structural and functional capabilities of advanced synthetic materials with naturally evolved biophysical systems. These platforms have the potential to serve as selective membranes for chemical separations and molecular sequencers and to even mimic neuromorphic computing elements. Despite the diversity in function, basic insight into the assembly of well-defined amphiphilic polymers to form functional structures remains elusive, which hinders the continued development of these technologies.

View Article and Find Full Text PDF

Lipid bilayers are fundamental building blocks of cell membranes, which contain the machinery needed to perform a range of biological functions, including cell-cell recognition, signal transduction, receptor trafficking, viral budding, and cell fusion. Importantly, many of these functions are thought to take place in the laterally phase-separated regions of the membrane, commonly known as lipid rafts. Here, we provide experimental evidence for the "stabilizing" effect of melatonin, a naturally occurring hormone produced by the brain's pineal gland, on phase-separated model membranes mimicking the outer leaflet of plasma membranes.

View Article and Find Full Text PDF

Recent studies have shown that frost can grow in a suspended Cassie state on nanostructured superhydrophobic surfaces. During defrosting, the melting sheet of Cassie frost spontaneously dewets into quasi-spherical slush droplets that are highly mobile. Promoting Cassie frost would therefore seem advantageous from a defrosting standpoint; however, nobody has systematically compared the efficiency of defrosting Cassie ice versus defrosting conventional surfaces.

View Article and Find Full Text PDF