Ferroptosis is a type of programmed cell death that depends on iron and is characterized by the accumulation of lipid peroxides. In the present study, we investigated the nature of the interplay between ferroptosis and other forms of cell death such as apoptosis. Human pancreatic cancer PANC-1 and BxPC-3 and human colorectal cancer HCT116 cells were treated with ferroptotic agents such as erastin and artesunate (ART) in combination with the apoptotic agent tumor necrosis factor-related apoptosis-inducing ligand (TRAIL).
View Article and Find Full Text PDFSince its discovery in 1995, TNF-related apoptosis-inducing ligand (TRAIL) has sparked growing interest among oncologists due to its remarkable ability to induce apoptosis in malignant human cells, but not in most normal cells. However, one major drawback is its fast clearance rate in vivo Thus, the development of an alternative means of delivery may increase the effectiveness of TRAIL-based therapy. In this study, we developed a secretory TRAIL-armed natural killer (NK) cell-based therapy and assessed its cytotoxic effects on colorectal cancer cells and its tumoricidal efficacy on colorectal peritoneal carcinomatosis xenograft.
View Article and Find Full Text PDFIt is well known that tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis can be initially triggered by surface death receptors (the extrinsic pathway) and subsequently amplified through mitochondrial dysfunction (the intrinsic pathway). However, little is known about signaling pathways activated by the TRAIL-induced endoplasmic reticulum (ER) stress response. In this study, we report that TRAIL-induced apoptosis is associated with the endoplasmic reticulum (ER) stress response.
View Article and Find Full Text PDF