Current microbial diagnostics for pleural infections are insufficient. Studies using 16S targeted next-generation sequencing report that only 10%-16% of bacteria present are cultured and that 50%-78% of pleural fluids containing relevant microbial DNA remain culture negative. As a rapid diagnostic alternative suitable for clinical laboratories, we wanted to explore a PCR-based approach.
View Article and Find Full Text PDFBackground: In pneumococcal community-acquired pneumonia (CAP), bacteremia is associated with increased mortality, but initial clinical severity scores frequently fail to identify bacteremic patients at risk. We have previously shown that gastrointestinal symptoms are common among patients admitted to the hospital with pneumococcal bacteremia. The aim of this study was to examine gastrointestinal symptoms and inflammatory responses in bacteremic and non-bacteremic pneumococcal CAP in a prospective cohort of immunocompromised and immunocompetent patients hospitalized with CAP.
View Article and Find Full Text PDFBackground: Many community-acquired pleural infections are caused by facultative and anaerobic bacteria from the human oral microbiota. The epidemiology, clinical characteristics, pathogenesis, and etiology of such infections are little studied. The aim of the present prospective multicenter cohort study was to provide a thorough microbiological and clinical characterization of such oral-type pleural infections and to improve our understanding of the underlying etiology and associated risk factors.
View Article and Find Full Text PDFBackground: Current approaches for pathogen identification in community-acquired pneumonia (CAP) remain suboptimal, leaving most patients without a microbiological diagnosis. If better diagnostic tools were available for differentiating between viral and bacterial CAP, unnecessary antibacterial therapy could be avoided in viral CAP patients.
Methods: In 156 adults hospitalized with CAP classified to have bacterial, viral, or mixed viral-bacterial infection based on microbiological testing or both microbiological testing and procalcitonin (PCT) levels, we aimed to identify discriminatory host transcriptional signatures in peripheral blood samples acquired at hospital admission, by applying Dual-color-Reverse-Transcriptase-Multiplex-Ligation-dependent-Probe-Amplification (dc-RT MLPA).
Background: Virtually all living organisms, including microbes and humans, depend on iron to survive and grow. During an infection, the plasma level of iron and several iron-related proteins change substantially. We hypothesized that iron and iron-related proteins could predict short- and long-term outcomes in community-acquired pneumonia.
View Article and Find Full Text PDFBackground: Iron is crucial for survival and growth of microbes. Consequently, limiting iron availability is a human antimicrobial defense mechanism. We explored iron and iron-related proteins as potential biomarkers in community-acquired pneumonia and hypothesized that infection-induced changes in these potential biomarkers differ between groups of pathogens and could predict microbial etiology.
View Article and Find Full Text PDFBackground: Biomarkers may facilitate clinical decisions in order to guide antimicrobial treatment and prediction of prognosis in community-acquired pneumonia (CAP). We measured serum C-reactive protein, procalcitonin (PCT) and calprotectin levels, and plasma pentraxin 3 (PTX3) and presepsin levels, along with whole-blood white cell counts, at three time-points, and examined their association with microbial aetiology and adverse clinical outcomes in CAP.
Methods: Blood samples were obtained at hospital admission, clinical stabilisation and 6-week follow-up from 267 hospitalised adults with CAP.
Background: Disease severity and outcome in community-acquired pneumonia (CAP) depend on the host and on the challenge of the causal microorganism(s). We measured levels of immunoglobulins (Igs) and complement in 257 hospitalized adults with CAP and examined the association of low levels of Igs or complement to microbial etiology, disease severity, and short-term and long-term outcome.
Methods: Serum Igs were analyzed in blood samples obtained at admission and at 6 weeks postdischarge if admission levels were low.
Background: The inflammatory response to community-acquired pneumonia (CAP) is orchestrated through activation of cytokine networks and the complement system. We examined the association of multiple cytokines and the terminal complement complex (TCC) with microbial aetiology, disease severity and short-term outcome.
Materials And Methods: Plasma levels of 27 cytokines and TCC were analysed in blood samples obtained at hospital admission, clinical stabilization and 6-week follow-up from 247 hospitalized adults with CAP.