This book on RAMPs covers a number of aspects on the biology of RAMPs. However, due to the uniqueness of some recent studies, they were not covered under a general title. Therefore, in this chapter, we describe three recent studies wherein RAMPs were found to be important players in cancer, hypertension and asthma.
View Article and Find Full Text PDFAM and CGRP receptors undergo differential intracellular receptor trafficking upon ligand stimulation. Intracellular trafficking of CLR/RAMP receptor complexes is regulated by posttranslational modifications and protein-protein interactions that differ for each cell type. Recent evidence is accumulating to suggest that the RAMP isoform in complex with CLR may play a role in determining the intracellular trafficking and fate of ligand-stimulated receptor complexes.
View Article and Find Full Text PDFReceptor activity modifying proteins (RAMPs) are single transmembrane proteins discovered for their role in the regulation of translocation of certain G-protein coupled receptors (GPCRs) to the plasma membrane. Since its discovery in 1998, several pivotal advances have been made in understanding the function of this family of proteins. This chapter provides a basic introduction to RAMPs as well as details on the various chapters in this book.
View Article and Find Full Text PDFThe discovery of receptor-activity-modifying proteins (RAMPs) as accessory proteins required for the appropriate localization and function of certain G-protein coupled receptors (GPCRs) produced a paradigm shift in our understanding of GPCR regulation. Three RAMPs have now been demonstrated to be crucial for various aspects of the life cycle of calcitonin-like receptor (CLR) including endoplasmic reticulum-to-Golgi translocation, internalization and recycling. Although the RAMP-CLR interaction was the first to be identified, other GPCRs belonging to both the class B and C families of GPCRs also seem to be regulated by RAMPs.
View Article and Find Full Text PDFReceptor activity-modifying proteins (RAMPs 1-3) are single transmembrane accessory proteins critical to various G-protein coupled receptors for plasma membrane expression and receptor phenotype. A functional receptor for the vasodilatory ligand, adrenomedullin (AM), is comprised of RAMP2 or RAMP3 and calcitonin receptor-like receptor (CRLR). It is now known that RAMP3 protein-protein interactions regulate the recycling of the AM2 receptor.
View Article and Find Full Text PDFRAMPs (1-3) are single transmembrane accessory proteins crucial for plasma membrane expression, which also determine receptor phenotype of various G-protein-coupled receptors. For example, adrenomedullin receptors are comprised of RAMP2 or RAMP3 (AM1R and AM2R, respectively) and calcitonin receptor-like receptor (CRLR), while a CRLR heterodimer with RAMP1 yields a calcitonin gene-related peptide receptor. The major aim of this study was to determine the role of RAMPs in receptor trafficking.
View Article and Find Full Text PDFGlomerular mesangial cells play an important role in the development of glomerulosclerosis. Mesangial cell apoptosis has been shown to be involved in different stages of development of glomerulonephritis. The aim of the present study was to evaluate the effect of inhibition of serine/threonine phosphatases by okadaic acid, a shell fish toxin, on rat mesangial cell apoptosis and to examine the molecular mechanisms particularly the role of caspases.
View Article and Find Full Text PDFAdrenomedullin (AM), a potent vasodilatory peptide has beneficial effects in the kidney IN VIVO. The major aim of the present study was to determine the presence of AM receptor and the biological outcomes of AM on kidney interstitial fibroblasts in culture. Utilizing RT-PCR we found that NRK-49F cells express calcitonin receptor like receptor (CRLR) and receptor activity modifying protein 2 (RAMP2) but not RAMP3.
View Article and Find Full Text PDFAdrenomedullin (AM), a potent vasodilatory peptide, has anti-proliferative and pro-apoptotic effects in rat mesangial cells (RMCs). We have previously demonstrated that AM modulates activities of the members of MAPK family in RMCs. Because activation of MAPKs has been reported to induce AP-1 expression in other cell systems, the major aim of the present study was to examine the effects and mechanisms of AM on AP-1 member mRNA expression, in RMCs.
View Article and Find Full Text PDFBackground/aims: Ciglitazone and other thiazolidinedione compounds are peroxisome proliferator-activated receptor-gamma (PPAR-gamma) ligands and improve renal function in diabetic nephropathy independent of blood glucose control. Because interstitial fibroblasts and glomerular mesangial cells are important cell types affected in diabetic nephropathy, the major aim of the present study was to examine the effect of ciglitazone on apoptosis and growth of renal interstitial fibroblasts (NRKs) and glomerular mesangial cells (MMCs).
Methods: The effect of ciglitazone on apoptosis and cell growth of cultured NRKs and MMCs was done using DNA fragmentation and MTS cell-growth assays, respectively.
Mixed lineage kinase 3 (MLK 3) (also called SPRK or PTK-1) is a recently described member of the family of the mixed lineage kinase subfamily of Ser/Thr protein kinases that interacts with mitogen-activated protein kinase pathways. In order to test the biological relevance and potential interaction of MLK 3 with protein kinase C-mediated signaling pathways, human MLK 3 was stably expressed in rat glomerular mesangial cells using a retroviral vector (LXSN) and the effects of phorbol myristoyl acetate (PMA) on DNA synthesis and osteopontin mRNA expression were examined. In control (vector-transfected) mesangial cells PMA increased [3H]-thymidine incorporation in a concentration-dependent manner.
View Article and Find Full Text PDFMixed lineage kinase 3 (MLK 3) is a recently described member of the MLK subfamily of Ser/Thr protein kinases that interacts with MAPK pathways. The aim of this study was to test the potential interaction of MLK 3 with signaling pathways stimulated by PDGF in rat mesangial cells. We have established a stable cell line expressing human MLK 3 in rat glomerular mesangial cells.
View Article and Find Full Text PDFReceptor activity modifying protein-3 (RAMP-3) has been shown to complex with the calcitonin receptor-like receptor, establishing a functional receptor for adrenomedullin (AM). AM exhibits potent antiproliferative and antimigratory effects on rat mesangial cells (RMCs). In this study we investigated the effect of platelet-derived growth factor (PDGF) on RAMP-3 expression in RMCs.
View Article and Find Full Text PDF