Publications by authors named "William S Slovinsky"

Several conditions are marked by increased susceptibility to, and enhanced severity of, bacterial infections. Alcohol use disorder, one of these conditions, is known to predispose to bacterial pneumonia by suppressing the lung's innate immune system, and more specifically by disrupting critical alveolar macrophage (AM) functions. Recently, we established that chronic ethanol consumption also perturbs surfactant lipid homeostasis in the lung and that elevated concentrations of free fatty acids contribute to blocking essential AM functions, such as agonist-induced cytokine expression.

View Article and Find Full Text PDF

Chronic alcohol consumption renders the lung more susceptible to infections by disrupting essential alveolar macrophage functions. Emerging evidence suggests that these functional deficits are due, in part, to a suppression of GM-CSF signaling, which is believed to compromise monocyte growth and maturation in the lung. However, in addition to controlling monocyte behaviors, GM-CSF also regulates surfactant homeostasis.

View Article and Find Full Text PDF

Environmental stressors like ethanol (EtOH) commonly target mitochondria to influence the cell's fate. Recent literature supports that chronic EtOH exposure suppresses mitochondrial dynamics, central to quality control, and sensitizes mitochondrial permeability transition pore opening to promote cell death. EtOH-induced tissue injury is primarily attributed to its toxic metabolic products but alcoholism also impairs tissues that poorly metabolize EtOH.

View Article and Find Full Text PDF

Mitochondrial fusion is thought to be important for supporting cardiac contractility, but is hardly detectable in cultured cardiomyocytes and is difficult to directly evaluate in the heart. We overcame this obstacle through in vivo adenoviral transduction with matrix-targeted photoactivatable GFP and confocal microscopy. Imaging in whole rat hearts indicated mitochondrial network formation and fusion activity in ventricular cardiomyocytes.

View Article and Find Full Text PDF

We have reported previously that millimeter waves (MMWs) protect T-cell functions from the toxic side effects of cyclophosphamide (CPA), an anticancer drug. Since the effect of MMWs has been reported to be mediated by endogenous opioids, the present study was undertaken to investigate the role of endogenous opioids in protection of T-cell functions by MMWs. The effect of MMWs (42.

View Article and Find Full Text PDF