The evaluation of biopsied solid organ tissue has long relied on visual examination using a microscope. Immunohistochemistry is critical in this process, labeling and detecting cell lineage markers and therapeutic targets. However, while the practice of immunohistochemistry has reshaped diagnostic pathology and facilitated improvements in cancer treatment, it has also been subject to pervasive challenges with respect to standardization and reproducibility.
View Article and Find Full Text PDFJ Mass Spectrom Adv Clin Lab
November 2022
Background: Despite its clear advantages over immunoassay-based testing, the measurement of serum thyroglobulin by mass spectrometry remains limited to a handful of institutions. Slow adoption by clinical laboratories could reflect limited accessibility to existing methods that have sensitivity comparable to modern immunoassays, as well as a lack of tools for calibration and assay harmonization.
Methods: We developed and validated a liquid chromatography-tandem mass spectrometry-based assay for the quantification of serum thyroglobulin.
Objectives: Standard implementations of amyloid typing by liquid chromatography-tandem mass spectrometry use capabilities unavailable to most clinical laboratories. To improve accessibility of this testing, we explored easier approaches to tissue sampling and data processing.
Methods: We validated a typing method using manual sampling in place of laser microdissection, pairing the technique with a semiquantitative measure of sampling adequacy.
Background: The measurement of plasma concentrations of retinol binding protein is a component of nutritional assessment in neonatal intensive care. However, serial testing in newborns is hampered by the limited amount of blood that can be sampled. Limitations are most severe with preterm infants, for whom close monitoring may be most important.
View Article and Find Full Text PDFObjectives: Initial reports indicate adequate performance of some serology-based severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) assays. However, additional studies are required to facilitate interpretation of results, including how antibody levels impact immunity and disease course.
Methods: A total of 967 subjects were tested for IgG antibodies reactive to SARS-CoV-2, including 172 suspected cases of SARS-CoV-2, 656 plasma samples from healthy donors, 49 sera from patients with rheumatic disease, and 90 specimens from individuals positive for polymerase chain reaction (PCR)-based respiratory viral panel.
Amino acid analysis is central to newborn screening and the investigation of inborn errors of metabolism. Ion-exchange chromatography with ninhydrin derivatization remains the reference method for quantitative amino acid analysis but offers slow chromatography and is susceptible to interference from other co-eluting compounds. Liquid-chromatography tandem mass spectrometry (LC-MS/MS) provides a rapid and highly specific alternative, but sample preparation is frequently laborious and sometimes cost prohibitive.
View Article and Find Full Text PDFInborn errors of metabolism (IEMs) are a large class of genetic disorders that result from defects in enzymes involved in energy production and metabolism of nutrients. For every metabolic pathway, there are defects that can occur and potentially result in an IEM. While some defects can go undetected in one's lifetime, some have moderate to severe clinical consequences.
View Article and Find Full Text PDFUntil recently, astronaut blood samples were collected in-flight, transported to earth on the Space Shuttle, and analyzed in terrestrial laboratories. If humans are to travel beyond low Earth orbit, a transition towards space-ready, point-of-care (POC) testing is required. Such testing needs to be comprehensive, easy to perform in a reduced-gravity environment, and unaffected by the stresses of launch and spaceflight.
View Article and Find Full Text PDFWe present a methodology for targeting quantum dots to specific proteins on living cells in two steps. In the first step, Escherichia coli lipoic acid ligase (LplA) site-specifically attaches 10-bromodecanoic acid onto a 13 amino acid recognition sequence that is genetically fused to a protein of interest. In the second step, quantum dots derivatized with HaloTag, a modified haloalkane dehalogenase, react with the ligated bromodecanoic acid to form a covalent adduct.
View Article and Find Full Text PDF