Publications by authors named "William S Nicoll"

Background: Plasmodium falciparum sporozoites injected by mosquitoes into the blood rapidly enter liver hepatocytes and undergo pre-erythrocytic developmental schizogony forming tens of thousands of merozoites per hepatocyte. Shortly after hepatocyte invasion, the parasite starts to produce Liver Stage Antigen-1 (LSA-1), which accumulates within the parasitophorous vacuole surrounding the mass of developing merozoites. The LSA-1 protein has been described as a flocculent mass, but its role in parasite development has not been determined.

View Article and Find Full Text PDF

An extensive protein-protein interaction network has been identified between proteins implicated in inherited ataxias. The protein sacsin, which is mutated in the early-onset neurodegenerative disease autosomal recessive spastic ataxia of Charlevoix-Saguenay, is a node in this interactome. Here, we have established the neuronal expression of sacsin and functionally characterized domains of the 4579 amino acid protein.

View Article and Find Full Text PDF

Human cerebral malaria is caused by the protozoan parasite Plasmodium falciparum, which establishes itself within erythrocytes. The normal body temperature in the human host could constitute a possible source of heat stress to the parasite. Molecular chaperones belonging to the heat shock protein (Hsp) class are thought to be important for parasite subsistence in the host cell, as the expression of some members of this family has been reported to increase upon heat shock.

View Article and Find Full Text PDF

Molecular chaperones are integral components of the cellular machinery involved in ensuring correct protein folding and the continued maintenance of protein structure. An understanding of these ubiquitous molecules is key to finding cures to protein misfolding diseases such as Alzheimer's and Creutzfeldt-Jacob diseases. In addition, further understanding of chaperones will enhance our comprehension of the way the body copes with the environmental stresses that humans encounter daily.

View Article and Find Full Text PDF

Heat shock protein 40s (Hsp40s) and heat shock protein 70s (Hsp70s) form chaperone partnerships that are key components of cellular chaperone networks involved in facilitating the correct folding of a broad range of client proteins. While the Hsp40 family of proteins is highly diverse with multiple forms occurring in any particular cell or compartment, all its members are characterized by a J domain that directs their interaction with a partner Hsp70. Specific Hsp40-Hsp70 chaperone partnerships have been identified that are dedicated to the correct folding of distinct subsets of client proteins.

View Article and Find Full Text PDF

The removal of either the PsbU or PsbV protein has been investigated in a cyanobacterial DeltaPsbO strain and in mutants carrying deletions or substitutions in lumen-exposed domains of CP47. These experiments have demonstrated a functional interaction between the PsbU protein and photosystem II (PSII) in the absence of the PsbO subunit. The control:DeltaPsbO:DeltaPsbU strain assembled PSII centers at pH 7.

View Article and Find Full Text PDF