Publications by authors named "William S Lagakos"

Obesity is associated with several chronic comorbidities, one of which is type 2 diabetes mellitus (T2DM). The pathogenesis of obesity and T2DM is influenced by alterations in diet macronutrient composition, which regulate energy expenditure, metabolic function, glucose homeostasis, and pancreatic islet cell biology. Recent studies suggest that increased intake of dietary carbohydrates plays a previously underappreciated role in the promotion of obesity and consequent metabolic dysfunction.

View Article and Find Full Text PDF

Docosahexaenoic acid (DHA 22:6n-3) and salicylate are both known to exert anti-inflammatory effects. This study investigated the effects of a novel bifunctional drug compound consisting of DHA and salicylate linked together by a small molecule that is stable in plasma but hydrolyzed in the cytoplasm. The components of the bifunctional compound acted synergistically to reduce inflammation mediated via nuclear factor κB in cultured macrophages.

View Article and Find Full Text PDF

Insulin resistance results from several pathophysiologic mechanisms, including chronic tissue inflammation and defective insulin signaling. We found that liver, muscle and adipose tissue exhibit higher levels of the chemotactic eicosanoid LTB4 in obese high-fat diet (HFD)-fed mice. Inhibition of the LTB4 receptor Ltb4r1, through either genetic or pharmacologic loss of function, led to an anti-inflammatory phenotype with protection from insulin resistance and hepatic steatosis.

View Article and Find Full Text PDF

It is well known that the ω-3 fatty acids (ω-3-FAs; also known as n-3 fatty acids) can exert potent anti-inflammatory effects. Commonly consumed as fish products, dietary supplements and pharmaceuticals, ω-3-FAs have a number of health benefits ascribed to them, including reduced plasma triglyceride levels, amelioration of atherosclerosis and increased insulin sensitivity. We reported that Gpr120 is the functional receptor for these fatty acids and that ω-3-FAs produce robust anti-inflammatory, insulin-sensitizing effects, both in vivo and in vitro, in a Gpr120-dependent manner.

View Article and Find Full Text PDF

Macrophage-mediated inflammation is a major contributor to obesity-associated insulin resistance. The corepressor NCoR interacts with inflammatory pathway genes in macrophages, suggesting that its removal would result in increased activity of inflammatory responses. Surprisingly, we find that macrophage-specific deletion of NCoR instead results in an anti-inflammatory phenotype along with robust systemic insulin sensitization in obese mice.

View Article and Find Full Text PDF

Liver fatty acid-binding protein (LFABP; FABP1) is expressed both in liver and intestinal mucosa. Mice null for LFABP were recently shown to have altered metabolism of not only fatty acids but also monoacylglycerol, the two major products of dietary triacylglycerol hydrolysis (Lagakos, W. S.

View Article and Find Full Text PDF

Obesity-associated hepatic steatosis is a manifestation of selective insulin resistance whereby lipogenesis remains sensitive to insulin but the ability of insulin to suppress glucose production is impaired. We created a mouse model of liver-specific knockdown of p70 S6 kinase (S6K) (L-S6K-KD) by systemic delivery of an adeno-associated virus carrying a shRNA for S6K and examined the effects on steatosis and insulin resistance. High fat diet (HFD) fed L-S6K-KD mice showed improved glucose tolerance and systemic insulin sensitivity compared with controls, with no changes in food intake or body weight.

View Article and Find Full Text PDF

Purpose Of Review: Chronic activation of inflammatory pathways mediates the pathogenesis of insulin resistance, and the macrophage/adipocyte nexus provides a key mechanism underlying decreased insulin sensitivity. Free fatty acids are important in the pathogenesis of insulin resistance, although their precise mechanisms of action have yet to be fully elucidated. Recently, a family of G-protein-coupled receptors has been identified that exhibits high affinity for fatty acids.

View Article and Find Full Text PDF

It has long been known that mammalian enterocytes coexpress two members of the fatty acid-binding protein (FABP) family, the intestinal FABP (IFABP) and the liver FABP (LFABP). Both bind long-chain fatty acids and have similar though not identical distributions in the intestinal tract. While a number of in vitro properties suggest the potential for different functions, the underlying reasons for expression of both proteins in the same cells are not known.

View Article and Find Full Text PDF

The metabolic fates of radiolabeled sn-2-monoacylglycerol (MG) and oleate (FA) in rat and mouse intestine, added in vivo to the apical (AP) surface in bile salt micelles, or to the basolateral (BL) surface via albumin-bound solution, were examined. Mucosal lipid products were quantified, and the results demonstrate a dramatic difference in the esterification patterns for both MG and FA, depending upon their site of entry into the enterocyte. For both lipids, the ratio of triacylglycerol to phospholipid (TG:PL) formed was approximately 10-fold higher for delivery at the AP relative to the BL surface.

View Article and Find Full Text PDF

The rate-limiting step in the transit of absorbed dietary fat across the enterocyte is the generation of the pre-chylomicron transport vesicle (PCTV) from the endoplasmic reticulum (ER). This vesicle does not require coatomer-II (COPII) proteins for budding from the ER membrane and contains vesicle-associated membrane protein 7, found in intestinal ER, which is a unique intracellular location for this SNARE protein. We wished to identify the protein(s) responsible for budding this vesicle from ER membranes in the absence of the requirement for COPII proteins.

View Article and Find Full Text PDF