Ocean bottom seismometer networks can record opportunistic data sets of 20-Hz fin whale calls. Because networks are often too sparse for multi-station tracking, single-station methods are needed to estimate call density. We investigated a method to range to singing fin whales at full ocean depths using the spacing of water column multiples.
View Article and Find Full Text PDFDistributed acoustic sensing (DAS) is a technique that measures strain changes along an optical fiber to distances of ∼100 km with a spatial sensitivity of tens of meters. In November 2021, 4 days of DAS data were collected on two cables of the Ocean Observatories Initiative Regional Cabled Array extending offshore central Oregon. Numerous 20 Hz fin whale calls, northeast Pacific blue whale A and B calls, and ship noises were recorded, highlighting the potential of DAS for monitoring the ocean.
View Article and Find Full Text PDFPassive acoustic monitoring is an important tool for studying marine mammals. Ocean bottom seismometer networks provide data sets of opportunity for studying blue whales (Balaenoptera musculus) which vocalize extensively at seismic frequencies. We describe methods to localize calls and obtain tracks using the B call of northeast Pacific blue whale recorded by a large network of widely spaced ocean bottom seismometers off the coast of the Pacific Northwest.
View Article and Find Full Text PDFA semi-automated method is described to range to vocalizing fin whales using the timing and amplitude of multipath arrivals measured on seafloor receivers. Calls are detected and multipath arrivals identified with a matched filter. Multipath times and relative amplitudes are predicted as a function of range by ray tracing.
View Article and Find Full Text PDFIn order to study the long-term stability of fin whale (Balaenoptera physalus) singing behavior, the frequency and inter-pulse interval of fin whale 20 Hz vocalizations were observed over 10 years from 2003-2013 from bottom mounted hydrophones and seismometers in the northeast Pacific Ocean. The instrument locations extended from 40°N to 48°N and 130°W to 125°W with water depths ranging from 1500-4000 m. The inter-pulse interval (IPI) of fin whale song sequences was observed to increase at a rate of 0.
View Article and Find Full Text PDFIn order to mitigate against possible impacts of seismic surveys on baleen whales it is important to know as much as possible about the presence of whales within the vicinity of seismic operations. This study expands on previous work that analyzes single seismic streamer data to locate nearby calling baleen whales with a grid search method that utilizes the propagation angles and relative arrival times of received signals along the streamer. Three dimensional seismic reflection surveys use multiple towed hydrophone arrays for imaging the structure beneath the seafloor, providing an opportunity to significantly improve the uncertainty associated with streamer-generated call locations.
View Article and Find Full Text PDFSeismic observations in volcanically active calderas are challenging. A new cabled observatory atop Axial Seamount on the Juan de Fuca ridge allows unprecedented real-time monitoring of a submarine caldera. Beginning on 24 April 2015, the seismic network captured an eruption that culminated in explosive acoustic signals where lava erupted on the seafloor.
View Article and Find Full Text PDFSeafloor spreading is largely unobserved because 98 per cent of the global mid-ocean-ridge system is below the ocean surface. Our understanding of the dynamic processes that control seafloor spreading is thus inferred largely from geophysical observations of spreading events on land at Afar in East Africa and Iceland. However, these are slow-spreading centres influenced by mantle plumes.
View Article and Find Full Text PDFMarine seismic surveys are under increasing scrutiny because of concern that they may disturb or otherwise harm marine mammals and impede their communications. Most of the energy from seismic surveys is low frequency, so concerns are particularly focused on baleen whales. Extensive mitigation efforts accompany seismic surveys, including visual and acoustic monitoring, but the possibility remains that not all animals in an area can be observed and located.
View Article and Find Full Text PDFVery-low-frequency sounds between 1 and 100 Hz propagate large distances in the ocean sound channel. Weather conditions, earthquakes, marine mammals, and anthropogenic activities influence sound levels in this band. Weather-related sounds result from interactions between waves, bubbles entrained by breaking waves, and the deformation of sea ice.
View Article and Find Full Text PDFFin whale calls recorded from 2003 to 2004 by a seafloor seismic network on the Endeavour segment of the Juan de Fuca Ridge were analyzed to determine tracks and calling patterns. Over 150 tracks were obtained with a total duration of ~800 h and swimming speeds from 1 to 12 km/h. The dominant inter-pulse interval (IPI) is 24 s and the IPI patterns define 4 categories: a 25 s single IPI and 24/30 s dual IPI produced by single calling whales, a 24/13 s dual IPI interpreted as two calling whales, and an irregular IPI interpreted as groups of calling whales.
View Article and Find Full Text PDFSource levels of fin whale calls can be used to determine range to recorded vocalizations and to model maximum communication range between animals. In this study, source levels of fin whale calls were estimated using data collected on a network of eight ocean bottom seismometers in the Northeast Pacific Ocean. The acoustic pressure levels measured at the instruments were adjusted for the propagation path between the calling whales and the instruments using the call location and estimating losses along the acoustic travel path.
View Article and Find Full Text PDFJ Acoust Soc Am
October 2012
Ocean bottom seismometer (OBS) networks represent a tool of opportunity to study fin and blue whales. A small OBS network on the Juan de Fuca Ridge in the northeast Pacific Ocean in ~2.3 km of water recorded an extensive data set of 20-Hz fin whale calls.
View Article and Find Full Text PDFMantle upwelling is essential to the generation of new oceanic crust at mid-ocean ridges, and it is generally assumed that such upwelling is symmetric beneath active ridges. Here, however, we use seismic imaging to show that the isotropic and anisotropic structure of the mantle is rotated beneath the East Pacific Rise. The isotropic structure defines the pattern of magma delivery from the mantle to the crust.
View Article and Find Full Text PDFHydrothermal flow through seafloor black smoker vents is typically turbulent and vigorous, with speeds often exceeding 1 m/s. Although theory predicts that these flows will generate sound, the prevailing view has been that black smokers are essentially silent. Here we present the first unambiguous field recordings showing that these vents radiate significant acoustic energy.
View Article and Find Full Text PDF