Publications by authors named "William Riehl"

Microbial communities have evolved to colonize all ecosystems of the planet, from the deep sea to the human gut. Microbes survive by sensing, responding, and adapting to immediate environmental cues. This process is driven by signal transduction proteins such as histidine kinases, which use their sensing domains to bind or otherwise detect environmental cues and "transduce" signals to adjust internal processes.

View Article and Find Full Text PDF

Uncultivated Bacteria and Archaea account for the vast majority of species on Earth, but obtaining their genomes directly from the environment, using shotgun sequencing, has only become possible recently. To realize the hope of capturing Earth's microbial genetic complement and to facilitate the investigation of the functional roles of specific lineages in a given ecosystem, technologies that accelerate the recovery of high-quality genomes are necessary. We present a series of analysis steps and data products for the extraction of high-quality metagenome-assembled genomes (MAGs) from microbiomes using the U.

View Article and Find Full Text PDF

Genome-scale stoichiometric modeling of metabolism has become a standard systems biology tool for modeling cellular physiology and growth. Extensions of this approach are emerging as a valuable avenue for predicting, understanding and designing microbial communities. Computation of microbial ecosystems in time and space (COMETS) extends dynamic flux balance analysis to generate simulations of multiple microbial species in molecularly complex and spatially structured environments.

View Article and Find Full Text PDF

The interspecies exchange of metabolites plays a key role in the spatiotemporal dynamics of microbial communities. This raises the question of whether ecosystem-level behavior of structured communities can be predicted using genome-scale metabolic models for multiple organisms. We developed a modeling framework that integrates dynamic flux balance analysis with diffusion on a lattice and applied it to engineered communities.

View Article and Find Full Text PDF

Background: Genome-scale prediction of gene regulation and reconstruction of transcriptional regulatory networks in prokaryotes is one of the critical tasks of modern genomics. Bacteria from different taxonomic groups, whose lifestyles and natural environments are substantially different, possess highly diverged transcriptional regulatory networks. The comparative genomics approaches are useful for in silico reconstruction of bacterial regulons and networks operated by both transcription factors (TFs) and RNA regulatory elements (riboswitches).

View Article and Find Full Text PDF

Metabolic networks perform some of the most fundamental functions in living cells, including energy transduction and building block biosynthesis. While these are the best characterized networks in living systems, understanding their evolutionary history and complex wiring constitutes one of the most fascinating open questions in biology, intimately related to the enigma of life's origin itself. Is the evolution of metabolism subject to general principles, beyond the unpredictable accumulation of multiple historical accidents? Here we search for such principles by applying to an artificial chemical universe some of the methodologies developed for the study of genome scale models of cellular metabolism.

View Article and Find Full Text PDF

Regulation of metabolic enzymes plays a crucial role in the maintenance of metabolic homeostasis, and in the capacity of living systems to undergo physiological adaptation under multiple environmental conditions. Metabolic regulation is achieved through a complex interplay of transcriptional and post-transcriptional mechanisms, some of which have been experimentally characterized for specific pathways and organisms. Many of the details, however, including the values of most kinetic parameters, have proven difficult to elucidate.

View Article and Find Full Text PDF