Microaspiration is a common phenomenon in healthy subjects, but its frequency is increased in chronic inflammatory airway diseases, and its role in inflammatory and immune phenotypes is unclear. We have previously demonstrated that acellular bronchoalveolar lavage samples from half of the healthy people examined are enriched with oral taxa (here called pneumotypeSPT) and this finding is associated with increased numbers of lymphocytes and neutrophils in bronchoalveolar lavage. Here, we have characterized the inflammatory phenotype using a multi-omic approach.
View Article and Find Full Text PDFIntroduction: Azithromycin (AZM) reduces pulmonary inflammation and exacerbations in patients with COPD having emphysema. The antimicrobial effects of AZM on the lower airway microbiome are not known and may contribute to its beneficial effects. Here we tested whether AZM treatment affects the lung microbiome and bacterial metabolites that might contribute to changes in levels of inflammatory cytokines in the airways.
View Article and Find Full Text PDFBackground: Recent computed tomography (CT) screening trials showed that it is effective for early detection of lung cancer, but were plagued by high false positive rates. Additional blood biomarker tests designed to complement CT screening and reduce false positive rates are highly desirable.
Objective: Identify blood-based metabolite biomarkers for diagnosing lung cancer.
Purpose: We have investigated the potential of metabolomics to discover blood-based biomarkers relevant to lung cancer screening and early detection. An untargeted metabolomics approach was applied to identify biomarker candidates using prediagnostic sera from the Beta-Carotene and Retinol Efficacy Trial (CARET) study.
Patients And Methods: A liquid chromatography/mass spectrometry hydrophilic interaction method designed to profile a wide range of metabolites was applied to prediagnostic serum samples from CARET participants (current or former heavy smokers), consisting of 100 patients who subsequently developed non-small-cell lung cancer (NSCLC) and 199 matched controls.
Lung cancer is a leading cause of cancer deaths worldwide. Metabolic alterations in tumor cells coupled with systemic indicators of the host response to tumor development have the potential to yield blood profiles with clinical utility for diagnosis and monitoring of treatment. We report results from two separate studies using gas chromatography time-of-flight mass spectrometry (GC-TOF MS) to profile metabolites in human blood samples that significantly differ from non-small cell lung cancer (NSCLC) adenocarcinoma and other lung cancer cases.
View Article and Find Full Text PDFAdenocarcinoma, a type of non-small cell lung cancer, is the most frequently diagnosed lung cancer and the leading cause of lung cancer mortality in the United States. It is well documented that biochemical changes occur early in the transition from normal to cancer cells, but the extent to which these alterations affect tumorigenesis in adenocarcinoma remains largely unknown. Herein, we describe the application of mass spectrometry and multivariate statistical analysis in one of the largest biomarker research studies to date aimed at distinguishing metabolic differences between malignant and nonmalignant lung tissue.
View Article and Find Full Text PDFBackground: The 5-amino acid (AA) signature, including isoleucine, leucine, valine, tyrosine, and phenylalanine, has been associated with incident diabetes mellitus and insulin resistance. We investigated whether this same AA signature, single-nucleotide polymorphisms in genes in their catabolic pathway, was associated with development of impaired fasting glucose (IFG) after atenolol treatment.
Methods And Results: Among 234 European American participants enrolled in the Pharmacogenomic Evaluation of Antihypertensive Responses (PEAR) study and treated with atenolol for 9 weeks, we prospectively followed a nested cohort that had both metabolomics profiling and genotype data available for the development of IFG.
We have shown that lithium treatment improves motor coordination in a spinocerebellar ataxia type 1 (SCA1) disease mouse model (Sca1(154Q/+)). To learn more about disease pathogenesis and molecular contributions to the neuroprotective effects of lithium, we investigated metabolomic profiles of cerebellar tissue and plasma from SCA1-model treated and untreated mice. Metabolomic analyses of wild-type and Sca1(154Q/+) mice, with and without lithium treatment, were performed using gas chromatography time-of-flight mass spectrometry and BinBase mass spectral annotations.
View Article and Find Full Text PDFAntihypertensive drugs are among the most commonly prescribed drugs for chronic disease worldwide. The response to antihypertensive drugs varies substantially between individuals and important factors such as race that contribute to this heterogeneity are poorly understood. In this study we use metabolomics, a global biochemical approach to investigate biochemical changes induced by the beta-adrenergic receptor blocker atenolol in Caucasians and African Americans.
View Article and Find Full Text PDFUnlabelled: Statins are widely prescribed for reducing LDL-cholesterol (C) and risk for cardiovascular disease (CVD), but there is considerable variation in therapeutic response. We used a gas chromatography-time-of-flight mass-spectrometry-based metabolomics platform to evaluate global effects of simvastatin on intermediary metabolism. Analyses were conducted in 148 participants in the Cholesterol and Pharmacogenetics study who were profiled pre and six weeks post treatment with 40 mg/day simvastatin: 100 randomly selected from the full range of the LDL-C response distribution and 24 each from the top and bottom 10% of this distribution ("good" and "poor" responders, respectively).
View Article and Find Full Text PDFLipids constitute 70% of the myelin sheath, and autoantibodies against lipids may contribute to the demyelination that characterizes multiple sclerosis (MS). We used lipid antigen microarrays and lipid mass spectrometry to identify bona fide lipid targets of the autoimmune response in MS brain, and an animal model of MS to explore the role of the identified lipids in autoimmune demyelination. We found that autoantibodies in MS target a phosphate group in phosphatidylserine and oxidized phosphatidylcholine derivatives.
View Article and Find Full Text PDFUntargeted metabolomics on the plasma and urine from wild-type and organic anion transporter-1 (Oat1/Slc22a6) knockout mice identified a number of physiologically important metabolites, including several not previously linked to Oat1-mediated transport. Several, such as indoxyl sulfate, derive from Phase II metabolism of enteric gut precursors and accumulate in chronic kidney disease (CKD). Other compounds included vitamins (pantothenic acid, 4-pyridoxic acid), urate, and metabolites in the tryptophan and nucleoside pathways.
View Article and Find Full Text PDFAnalytical and biological variability are issues of central importance to human metabolomics studies. Here both types of variation are examined in human plasma and cerebrospinal fluid (CSF) using a global liquid chromatography/mass spectrometry (LC/MS) metabolomics strategy. The platform shows small analytical variation with a median coefficient of variation (CV) of 15-16% for both plasma and CSF sample matrixes when the integrated area of each peak in the mass spectra is considered.
View Article and Find Full Text PDFLymphocytic choriomeningitis virus (LCMV) infection of mice is noncytopathic, producing well-characterized changes reflecting the host immune response. Untargeted metabolomics using mass spectrometry identified endogenous small molecule changes in blood from mice inoculated with LCMV, sampled at days 1, 3, 7, and 14 post infection. These time points correspond to well characterized events during acute LCMV infection and the immune response.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
March 2009
Although it has long been recognized that the enteric community of bacteria that inhabit the human distal intestinal track broadly impacts human health, the biochemical details that underlie these effects remain largely undefined. Here, we report a broad MS-based metabolomics study that demonstrates a surprisingly large effect of the gut "microbiome" on mammalian blood metabolites. Plasma extracts from germ-free mice were compared with samples from conventional (conv) animals by using various MS-based methods.
View Article and Find Full Text PDFVirtually all cellular processes are carried out by dynamic molecular assemblies or multiprotein complexes, the compositions of which are largely undefined. They cannot be predicted solely from bioinformatics analyses nor are there well defined techniques currently available to unequivocally identify protein complexes (PCs). To address this issue, we attempted to directly determine the identity of PCs from native microbial biomass using Pyrococcus furiosus, a hyperthermophilic archaeon that grows optimally at 100 degrees C, as the model organism.
View Article and Find Full Text PDFHIV infiltrates the CNS soon after an individual has become infected with the virus, and can cause dementia and encephalitis in late-stage disease. Here, a global metabolomics approach was used to find and identify metabolites differentially regulated in the cerebrospinal fluid (CSF) of rhesus macaques with SIV-induced CNS disease, as we hypothesized that this might provide biomarkers of virus-induced CNS damage. The screening platform used a non-targeted, mass-based metabolomics approach beginning with capillary reverse phase chromatography and electrospray ionization with accurate mass determination, followed by novel, nonlinear data alignment and online database screening to identify metabolites.
View Article and Find Full Text PDFJ Am Soc Nephrol
September 2008
Renal organic anion transporters (OAT) are known to mediate the excretion of many drugs, but their function in normal physiology is not well understood. In this study, mice lacking organic anion transporter 3 (Oat3) had a 10 to 15% lower BP than wild-type mice, raising the possibility that Oat3 transports an endogenous regulator of BP. The aldosterone response to a low-salt diet was blunted in Oat3-null mice, but baseline aldosterone concentration was higher in these mice, suggesting that aldosterone dysregulation does not fully explain the lower BP in the basal state; therefore, both targeted and global metabolomic analyses of plasma and urine were performed, and several potential endogenous substrates of Oat3 were found to accumulate in the plasma of Oat3-null mice.
View Article and Find Full Text PDFExcretion of uric acid, a compound of considerable medical importance, is largely determined by the balance between renal secretion and reabsorption. The latter process has been suggested to be principally mediated by urate transporter 1 (URAT1; slc22a12), but the role of various putative urate transporters has been much debated. We have characterized urate handling in mice null for RST, the murine ortholog of URAT1, as well as in those null for the related organic anion transporters Oat1 and Oat3.
View Article and Find Full Text PDFBackground: We applied untargeted mass spectrometry-based metabolomics to the diseases methylmalonic acidemia (MMA) and propionic acidemia (PA).
Methods: We used a screening platform that used untargeted, mass-based metabolomics of methanol-extracted plasma to find significantly different molecular features in human plasma samples from MMA and PA patients and from healthy individuals. Capillary reverse phase liquid chromatography (4 microL/min) was interfaced to a TOF mass spectrometer, and data were processed using nonlinear alignment software (XCMS) and an online database (METLIN) to find and identify metabolites differentially regulated in disease.
Background: The obesity epidemic has prompted the search for candidate genes capable of influencing adipose function. One such candidate, that encoding phospholipid scramblase 3 (PLSCR3), was recently identified, as genetic deletion of it led to lipid accumulation in abdominal fat pads and changes characteristic of metabolic syndrome. Because adipose tissue is increasingly recognized as an endocrine organ, capable of releasing small molecules that modulate disparate physiological processes, we examined the plasma from wild-type, Plscr1-/-, Plscr3-/- and Plscr1&3-/- mice.
View Article and Find Full Text PDFMass spectrometry analysis was used to target three different aspects of the viral infection process: the expression kinetics of viral proteins, changes in the expression levels of cellular proteins, and the changes in cellular metabolites in response to viral infection. The combination of these methods represents a new, more comprehensive approach to the study of viral infection revealing the complexity of these events within the infected cell. The proteins associated with measles virus (MV) infection of human HeLa cells were measured using a label-free approach.
View Article and Find Full Text PDFThe bacteriophage HK97 capsid is a molecular machine that exhibits large-scale conformational rearrangements of its 420 identical protein subunits during capsid maturation. Immature empty capsids, termed Prohead II, assemble in vivo in an Escherichia coli expression system. Maturation of these particles may be induced in vitro, converting them into Head II capsids that are indistinguishable in conformation from the capsid of an infectious phage particle.
View Article and Find Full Text PDFActa Crystallogr D Biol Crystallogr
December 2003
HK97 Prohead II is an early intermediate in the maturation of HK97, a T = 7 dsDNA-tailed bacteriophage related to bacteriophage lambda. Previously, selected capsid-protein genes of HK97 were expressed in Escherichia coli and spontaneously assembled to form an icosahedral capsid that followed a maturation pathway closely similar to the authentic virion. The crystal structure of the mature HK97 capsid (Head II) made in this way was reported at 3.
View Article and Find Full Text PDFThe HK97 bacteriophage capsid is a unique example of macromolecular catenanes: interlocked rings of covalently attached protein subunits. The chain mail organization of the subunits stabilizes a particle in which the maximum thickness of the protein shell is 18A and the maximum diameter is 550A. The electron density has the appearance of a balloon illustrating the extraordinary strength conferred by the unique subunit organization.
View Article and Find Full Text PDF