Publications by authors named "William R Salaneck"

We report laterally and vertically phase-separated thin film structures in conjugated polymer blends created by polymer molecular weight variation. We find that micrometer-scale lateral phase separation is critical in achieving high initial device efficiency of light-emitting diodes, whereas improved balance of charge carrier mobilities and film thickness uniformity are important in maintaining high efficiency at high voltages. The optoelectronic properties of these blend thin films and devices are strongly influenced by the polymer chain order/disorder and the interface state formed at polymer/polymer heterojunctions.

View Article and Find Full Text PDF

Ambipolar, solution-processed thin-film transistors based on a discotic dye turn into unipolar behavior after thermal annealing. No evidence for temperature-induced change in injection barrier or interface trapping can be found to explain this phenomenon. Instead, a variation in morphology is considered as the cause for the observed transition from ambipolar to unipolar charge transport.

View Article and Find Full Text PDF

The role of nitrogen in the charge transfer and storage capacity of lithium-intercalated heterocyclic oligophenylenes was investigated using photoelectron spectroscopy. The development of new occupied states at low binding energies in the valence band region, as well as core level chemical shifts at both carbon and nitrogen sites, demonstrates partial charge transfer from lithium atoms to the organic component during formation of the intercalated compound. In small compounds, i.

View Article and Find Full Text PDF

Structural and electronic properties of pristine and lithium-intercalated, phenyl-capped aniline dimers as a model for the lithium-polyaniline system have been studied by photoelectron spectroscopy and quantum chemical calculations. It was found that the electronic structure of reduced and oxidized forms of oligoanilines is only weakly affected by isomerism. Upon intercalation, charge transfer from the Li-atoms is remarkable and highly localized at N-atomic sites, where configurations are energetically favored in which both N atoms of the dimers are bound to Li atoms.

View Article and Find Full Text PDF

The vibrational coupling in the ground and excited states of positively charged naphthalene, anthracene, tetracene, and pentacene molecules is studied on the basis of a joint experimental and theoretical study of ionization spectra using high-resolution gas-phase photoelectron spectroscopy and first-principles correlated quantum-mechanical calculations. Our theoretical and experimental results reveal that, while the main contribution to relaxation energy in the ground state of oligoacene systems comes from high-energy vibrations, the excited-state relaxation energies show a significant redistribution toward lower-frequency vibrations. A direct correlation is found between the nature of the vibronic interaction and the pattern of the electronic state structure.

View Article and Find Full Text PDF

This paper deals with the influence of the nature and number of solid interfaces on the alignment of the columns in a semiconducting discotic liquid crystal. The solid substrates have been characterized in terms of their roughness and surface energy. The alignment of the discotic liquid crystal columns on these substrates has been determined by optical microscopy under crossed polarizers and by tapping-mode atomic force microscopy.

View Article and Find Full Text PDF

Thin films of aligned supramolecular architectures built from newly synthesized thiophene-substituted porphyrins have been processed from solution on surfaces.

View Article and Find Full Text PDF

Discotic liquid crystals emerge as very attractive materials for organic-based (opto)electronics as they allow efficient charge and energy transport along self-organized molecular columns. Here, angle-resolved photoelectron spectroscopy (ARUPS) is used to investigate the electronic structure and supramolecular organization of the discotic molecule, hexakis(hexylthio)diquinoxalino[2,3-a:2',3'-c]phenazine, deposited on graphite. The ARUPS data reveal significant changes in the electronic properties when going from disordered to columnar phases, the main feature being a decrease in ionization potential by 1.

View Article and Find Full Text PDF

The hole-vibrational coupling in naphthalene is studied using high-resolution gas-phase photoelectron spectroscopy and density functional theory calculations (DFT), and a remarkable increase of the coupling with low-frequency vibrations is observed in the excited states.

View Article and Find Full Text PDF

In organics-based (opto)electronic devices, the interface dipoles formed at the organic/metal interfaces play a key role in determining the barrier for charge (hole or electron) injection between the metal electrodes and the active organic layers. The origin of this dipole is rationalized here from the results of a joint experimental and theoretical study based on the interaction between acrylonitrile, a pi-conjugated molecule, and transition metal surfaces (Cu, Ni, and Fe). The adsorption of acrylonitrile on these surfaces is investigated experimentally by photoelectron spectroscopies, while quantum mechanical methods based on density functional theory are used to study the systems theoretically.

View Article and Find Full Text PDF