The 'canonical' protein sets distributed by UniProt are widely used for similarity searching, and functional and structural annotation. For many investigators, canonical sequences are the only version of a protein examined. However, higher eukaryotes often encode multiple isoforms of a protein from a single gene.
View Article and Find Full Text PDFThe integration of mitochondrial genome fragments into the nuclear genome is well documented, and the transfer of these mitochondrial nuclear pseudogenes (numts) is thought to be an ongoing evolutionary process. With the increasing number of eukaryotic genomes available, genome-wide distributions of numts are often surveyed. However, inconsistencies in genome quality can reduce the accuracy of numt estimates, and methods used for identification can be complicated by the diverse sizes and ages of numts.
View Article and Find Full Text PDFPLoS One
April 2020
Bioinformatics, a discipline that combines aspects of biology, statistics, mathematics, and computer science, is becoming increasingly important for biological research. However, bioinformatics instruction is not yet generally integrated into undergraduate life sciences curricula. To understand why we studied how bioinformatics is being included in biology education in the US by conducting a nationwide survey of faculty at two- and four-year institutions.
View Article and Find Full Text PDFCurr Protoc Bioinformatics
September 2017
Relational databases can integrate diverse types of information and manage large sets of similarity search results, greatly simplifying genome-scale analyses. By focusing on taxonomic subsets of sequences, relational databases can reduce the size and redundancy of sequence libraries and improve the statistical significance of homologs. In addition, by loading similarity search results into a relational database, it becomes possible to explore and summarize the relationships between all of the proteins in an organism and those in other biological kingdoms.
View Article and Find Full Text PDFIterative similarity search programs, like psiblast, jackhmmer, and psisearch, are much more sensitive than pairwise similarity search methods like blast and ssearch because they build a position specific scoring model (a PSSM or HMM) that captures the pattern of sequence conservation characteristic to a protein family. But models are subject to contamination; once an unrelated sequence has been added to the model, homologs of the unrelated sequence will also produce high scores, and the model can diverge from the original protein family. Examination of alignment errors during psiblast PSSM contamination suggested a simple strategy for dramatically reducing PSSM contamination.
View Article and Find Full Text PDFThe FASTA programs provide a comprehensive set of rapid similarity searching tools (fasta36, fastx36, tfastx36, fasty36, tfasty36), similar to those provided by the BLAST package, as well as programs for slower, optimal, local, and global similarity searches (ssearch36, ggsearch36), and for searching with short peptides and oligonucleotides (fasts36, fastm36). The FASTA programs use an empirical strategy for estimating statistical significance that accommodates a range of similarity scoring matrices and gap penalties, improving alignment boundary accuracy and search sensitivity. The FASTA programs can produce "BLAST-like" alignment and tabular output, for ease of integration into existing analysis pipelines, and can search small, representative databases, and then report results for a larger set of sequences, using links from the smaller dataset.
View Article and Find Full Text PDFThe characterization of new genomes based on their protein sets has been revolutionized by new sequencing technologies, but biologists seeking to exploit new sequence information are often frustrated by the challenges associated with accurately assigning biological functions to newly identified proteins. Here, we highlight some of the challenges in functional inference from sequence similarity. Investigators can improve the accuracy of function prediction by (1) being conservative about the evolutionary distance to a protein of known function; (2) considering the ambiguous meaning of "functional similarity," and (3) being aware of the limitations of annotations in functional databases.
View Article and Find Full Text PDFBackground: Protein domains are commonly used to assess the functional roles and evolutionary relationships of proteins and protein families. Here, we use the Pfam protein family database to examine a set of candidate partial domains. Pfam protein domains are often thought of as evolutionarily indivisible, structurally compact, units from which larger functional proteins are assembled; however, almost 4% of Pfam27 PfamA domains are shorter than 50% of their family model length, suggesting that more than half of the domain is missing at those locations.
View Article and Find Full Text PDFProtein sequence similarity searching programs like BLASTP, SSEARCH (UNIT 3.10), and FASTA use scoring matrices that are designed to identify distant evolutionary relationships (BLOSUM62 for BLAST, BLOSUM50 for SEARCH and FASTA). Different similarity scoring matrices are most effective at different evolutionary distances.
View Article and Find Full Text PDFUnderstanding which are the catalytic residues in an enzyme and what function they perform is crucial to many biology studies, particularly those leading to new therapeutics and enzyme design. The original version of the Catalytic Site Atlas (CSA) (http://www.ebi.
View Article and Find Full Text PDFBLAST, FASTA, and other similarity searching programs seek to identify homologous proteins and DNA sequences based on excess sequence similarity. If two sequences share much more similarity than expected by chance, the simplest explanation for the excess similarity is common ancestry-homology. The most effective similarity searches compare protein sequences, rather than DNA sequences, for sequences that encode proteins, and use expectation values, rather than percent identity, to infer homology.
View Article and Find Full Text PDFMotivation: Sequence similarity searches performed with BLAST, SSEARCH and FASTA achieve high sensitivity by using scoring matrices (e.g. BLOSUM62) that target low identity (<33%) alignments.
View Article and Find Full Text PDFSequence similarity searching, typically with BLAST, is the most widely used and most reliable strategy for characterizing newly determined sequences. Sequence similarity searches can identify "homologous" proteins or genes by detecting excess similarity- statistically significant similarity that reflects common ancestry. This unit provides an overview of the inference of homology from significant similarity, and introduces other units in this chapter that provide more details on effective strategies for identifying homologs.
View Article and Find Full Text PDFUnlabelled: Iterative similarity searches with PSI-BLAST position-specific score matrices (PSSMs) find many more homologs than single searches, but PSSMs can be contaminated when homologous alignments are extended into unrelated protein domains-homologous over-extension (HOE). PSI-Search combines an optimal Smith-Waterman local alignment sequence search, using SSEARCH, with the PSI-BLAST profile construction strategy. An optional sequence boundary-masking procedure, which prevents alignments from being extended after they are initially included, can reduce HOE errors in the PSSM profile.
View Article and Find Full Text PDFMACiE (which stands for Mechanism, Annotation and Classification in Enzymes) is a database of enzyme reaction mechanisms, and can be accessed from http://www.ebi.ac.
View Article and Find Full Text PDFUnlabelled: RefProtDom provides a set of divergent query domains, originally selected from Pfam, and full-length proteins containing their homologous domains, with diverse architectures, for evaluating pair-wise and iterative sequence similarity searches. Pfam homology and domain boundary annotations in the target library were supplemented using local and semi-global searches, PSI-BLAST searches, and SCOP and CATH classifications.
Availability: RefProtDom is available from http://faculty.
Background: While the pairwise alignments produced by sequence similarity searches are a powerful tool for identifying homologous proteins - proteins that share a common ancestor and a similar structure; pairwise sequence alignments often fail to represent accurately the structural alignments inferred from three-dimensional coordinates. Since sequence alignment algorithms produce optimal alignments, the best structural alignments must reflect suboptimal sequence alignment scores. Thus, we have examined a range of suboptimal sequence alignments and a range of scoring parameters to understand better which sequence alignments are likely to be more structurally accurate.
View Article and Find Full Text PDFNucleic Acids Res
April 2010
We have characterized a novel type of PSI-BLAST error, homologous over-extension (HOE), using embedded PFAM domain queries on searches against a reference library containing Pfam-annotated UniProt sequences and random synthetic sequences. PSI-BLAST makes two types of errors: alignments to non-homologous regions and HOE alignments that begin in a homologous region, but extend beyond the homology into neighboring sequence regions. When the neighboring sequence region contains a non-homologous domain, PSI-BLAST can incorporate the unrelated sequence into its position specific scoring matrix, which then finds non-homologous proteins with significant expectation values.
View Article and Find Full Text PDFMotivation: To test whether protein folding constraints and secondary structure sequence preferences significantly reduce the space of amino acid words in proteins, we compared the frequencies of four- and five-amino acid word clumps (independent words) in proteins to the frequencies predicted by four random sequence models.
Results: While the human proteome has many overrepresented word clumps, these words come from large protein families with biased compositions (e.g.
Curr Protoc Bioinformatics
October 2004
Relational databases are designed to integrate diverse types of information and manage large sets of search results, greatly simplifying genome-scale analyses. Relational databases are essential for management and analysis of large-scale sequence analyses, and can also be used to improve the statistical significance of similarity searches by focusing on subsets of sequence libraries most likely to contain homologs. This unit describes using relational databases to improve the efficiency of sequence similarity searching and to demonstrate various large-scale genomic analyses of homology-related data.
View Article and Find Full Text PDFThe best known glutathione transferase family, with its class-alpha, -mu, -pi, -omega, -sigma, -theta, and -zeta subdivisions, is only one of four, or perhaps five, ancient protein families that conjugate glutathione or use a glutathione intermediate: (1) the cytoplasmic family, (2) the mitochondrial (kappa) family, (3) the microsomal (MAPEG) family, which may actually be two separate families, and (4) the fosphomycin/glyoxalase family. Although the cytoplasmic family is perhaps the most diverse, all four of these families have homologs in both prokaryotes and eukaryotes; it is striking that at least three, and perhaps as many as five, different protein folds capable of binding and positioning glutathione for a nucleophilic attack emerged more than 2 billion years ago. This chapter presents phylogenies for the four (or five) glutathione transferase families, focusing on the statistical evidence for homology (and non-homology).
View Article and Find Full Text PDFThe nomenclature for human soluble glutathione transferases (GSTs) is extended to include new members of the GST superfamily that have been discovered, sequenced, and shown to be expressed. The GST nomenclature is based on primary structure similarities and the division of GSTs into classes of more closely related sequences. The classes are designated by the names of the Greek letters: Alpha, Mu, Pi, etc.
View Article and Find Full Text PDFModern sequence alignment algorithms are used routinely to identify homologous proteins, proteins that share a common ancestor. Homologous proteins always share similar structures and often have similar functions. Over the past 20 years, sequence comparison has become both more sensitive, largely because of profile-based methods, and more reliable, because of more accurate statistical estimates.
View Article and Find Full Text PDFCryptosporidium species cause acute gastroenteritis and diarrhoea worldwide. They are members of the Apicomplexa--protozoan pathogens that invade host cells by using a specialized apical complex and are usually transmitted by an invertebrate vector or intermediate host. In contrast to other Apicomplexans, Cryptosporidium is transmitted by ingestion of oocysts and completes its life cycle in a single host.
View Article and Find Full Text PDFSeven protein structure comparison methods and two sequence comparison programs were evaluated on their ability to detect either protein homologs or domains with the same topology (fold) as defined by the CATH structure database. The structure alignment programs Dali, Structal, Combinatorial Extension (CE), VAST, and Matras were tested along with SGM and PRIDE, which calculate a structural distance between two domains without aligning them. We also tested two sequence alignment programs, SSEARCH and PSI-BLAST.
View Article and Find Full Text PDF