Nitrate (NO) leaching is a serious health and ecological concern in global agroecosystems, particularly those under the application of agricultural-managed aquifer recharge (Ag-MAR); however, there is an absence of information on microbial controls affecting NO leaching outcomes. We combine natural dual isotopes of NO (N/N and O/O) with metagenomics, quantitative polymerase chain reaction (PCR), and a threshold indicator taxa analysis (TITAN) to investigate the activities, taxon profiles, and environmental controls of soil microbiome associated with NO leaching at different depths from Californian vineyards under Ag-MAR application. The isotopic signatures demonstrated a significant priming effect ( < 0.
View Article and Find Full Text PDFAgricultural managed aquifer recharge (Ag-MAR, on-farm recharge), where farmland is flooded with excess surface water to intentionally recharge groundwater, has received increasing attention by policy makers and researchers in recent years. However, there remain concerns about the potential for Ag-MAR to exacerbate nitrate (NO) contamination of groundwater, and additional risks, such as greenhouse gas emissions and crop tolerance to prolonged flooding. Here, we conducted a large-scale, replicated winter groundwater recharge experiment to quantify the effect of Ag-MAR on soil N biogeochemical transformations, potential NO leaching to groundwater, soil physico-chemical conditions, and crop yield.
View Article and Find Full Text PDFTwo primary concerns of dairies that store manure wastewater in anaerobic ponds are greenhouse gas (GHG) emissions and unpredictable nutrient availability after applying it to forage crops. Solid-liquid separation of dairy manure wastewater with chemical coagulants significantly reduces the fraction of organic matter stored in anaerobic conditions. However, the effects of coagulants on methane emissions from ponds and nutrient availability following field application are not well understood.
View Article and Find Full Text PDFAmmonia (NH ) emissions from fertilized soils to the atmosphere and the subsequent deposition to land surface exert adverse effects on biogeochemical nitrogen (N) cycling. The region- and crop-specific emission factors (EFs) of N fertilizer for NH are poorly developed and therefore the global estimate of soil NH emissions from agricultural N fertilizer application is constrained. Here we quantified the region- and crop-specific NH EFs of N fertilizer by compiling data from 324 worldwide manipulative studies and focused to map the global soil NH emissions from agricultural N fertilizer application.
View Article and Find Full Text PDFHeavy metals are believed to impact soil processes by influencing microbial communities, nutrient cycling or exchanging for essential plant nutrients. Soil pH adjustment highly influences the bio-availability of nutrients and microbial processes. We examined the effect of soil pH manipulation and copper (Cu as CuCl.
View Article and Find Full Text PDFRice is a staple food for nearly half of the world's population, but rice paddies constitute a major source of anthropogenic CH emissions. Root exudates from growing rice plants are an important substrate for methane-producing microorganisms. Therefore, breeding efforts optimizing rice plant photosynthate allocation to grains, i.
View Article and Find Full Text PDFMercury (Hg) pollution is a concern to human and wildlife health worldwide, and management strategies that reduce Hg inputs to aquatic systems are of broad interest. Using a replicated field-scale study in California's Sacramento-San Joaquin Delta, we tested the effectiveness of chemically enhanced treatment wetlands (CETWs) under two coagulation treatments, polyaluminum chloride (Al treatment) and ferric sulfate (Fe treatment), in their initial removal and longer-term sequestration of Hg compared to untreated control wetlands. The primary mechanism for Hg removal by CETWs was the transfer of Hg from filtered forms to insoluble particulate forms and enhanced settling of particles.
View Article and Find Full Text PDFMany deltas worldwide face subsidence issues due to increased anthropogenic activity. The Sacramento-San Joaquin delta similarly faces ongoing subsidence, more than 8 m in some areas, that increases levee failure risks and threatens the security of this water source for 25 million California residents and 1.2 million ha of agriculture.
View Article and Find Full Text PDFLand surface subsidence is a concern in many deltas worldwide as it contributes to water quality degradation, loss of fertile land and increased potential for levee failure. As a possible solution to these concerns, on-site coagulation enhanced treatment wetlands (CETWs), coagulation water treatment followed by wetland passage serving as a settling basin, were implemented in a field-scale study located on a subsided island of the Sacramento-San Joaquin Delta in northern California under three treatments; coagulation with polyaluminum chloride (PAC), coagulation with ferric sulfate and an untreated control. Because CETWs offer a relatively novel solution for water quality improvement and subsidence reversal due to its low-infrastructure requirements and in-situ nature, effects from these systems remain uncharted and they may have adverse effects on plant biomass production that also contribute to sediment accretion.
View Article and Find Full Text PDFThis study was designed to address a major source of uncertainty pertaining to coupled carbon-water cycles in montane forest ecosystems. The Sierra Nevada of California was used as a model system to investigate connections between the physiological performance of trees and landscape patterns of forest carbon and water use. The intrinsic water-use efficiency (iWUE)-an index of CO fixed per unit of potential water lost via transpiration-of nine dominant species was determined in replicated transects along an ∼1,500-m elevation gradient, spanning a broad range of climatic conditions and soils derived from three different parent materials.
View Article and Find Full Text PDFConstructed wetlands are used worldwide to improve water quality while also providing critical wetland habitat. However, wetlands have the potential to negatively impact drinking water quality by exporting dissolved organic carbon (DOC) that upon disinfection can form disinfection byproducts (DBPs) like trihalomethanes (THMs) and haloacetic acids (HAAs). We used a replicated field-scale study located on organic rich soils in California's Sacramento-San Joaquin Delta to test whether constructed flow-through wetlands which receive water high in DOC that is treated with either iron- or aluminum-based coagulants can improve water quality with respect to DBP formation.
View Article and Find Full Text PDFSynthetic nitrogen (N) fertilizer formulations vary in their effects as substrates on nitrous oxide (NO) emissions. Mitigation of NO emissions can potentially be achieved through appropriate choice of N fertilizer sources combined with stabilizers. The effects of three N fertilizers and urease and nitrification inhibitors on NO emissions, crop N uptake, and yields were determined in a furrow-irrigated corn ( L.
View Article and Find Full Text PDFSimilar to plant growth, soil carbon (C) cycling is constrained by the availability of nitrogen (N) and phosphorus (P). We hypothesized that stoichiometric control over soil microbial C cycling may be shaped by functional guilds with distinct nutrient substrate preferences. Across a series of rice fields spanning 5-25% soil C (N:P from 1:12 to 1:70), C turnover was best correlated with P availability and increased with experimental N addition only in lower C (mineral) soils with N:P⩽16.
View Article and Find Full Text PDFBreeding high-yielding rice cultivars through increasing biomass is a key strategy to meet rising global food demands. Yet, increasing rice growth can stimulate methane (CH ) emissions, exacerbating global climate change, as rice cultivation is a major source of this powerful greenhouse gas. Here, we show in a series of experiments that high-yielding rice cultivars actually reduce CH emissions from typical paddy soils.
View Article and Find Full Text PDFNitrogen (N) is the most limiting nutrient for coffee production in Colombia. An adequate supply is especially important during the vegetative period of growth, since any deficiency during this short period is known to have lasting effects on subsequent coffee bean production. Urea fertilizer is commonly applied on the soil surface since steep slopes hamper incorporation into soil, a practice which increases the risk of N volatilization.
View Article and Find Full Text PDFThe conversion from rice to vegetable production widely occurs in China. However, the effects of this conversion on NO emission and the underlying mechanisms are not well understood. In the present study, 12 rice paddies (R) were selected and half of them converted to vegetable fields (V) with the following treatments: rice paddies without N-fertilizer (R-CK), rice paddies with conventional N-fertilizer (R-CN), converted vegetable fields without N-fertilizer (V-CK), and converted vegetable fields with conventional N-fertilizer (V-CN) in a randomized block design with 3 replicates.
View Article and Find Full Text PDFThe process of composting is a source of greenhouse gases (GHG) that contribute to climate change. We monitored three field-scale green waste compost windrows over a one-year period to measure the seasonal variance of the GHG fluxes. The compost pile that experienced the wettest and coolest weather had the highest average CH emission of 254±76gCday dry weight (DW) Mg and lowest average NO emission of 152±21mgNday DW Mgcompared to the other seasonal piles.
View Article and Find Full Text PDFMany forest ecosystems have experienced recent declines in productivity; however, in some alpine regions, tree growth and forest expansion are increasing at marked rates. Dendrochronological analyses at the upper limit of alpine forests in the Tibetan Plateau show a steady increase in tree growth since the early 1900s, which intensified during the 1930s and 1960s, and have reached unprecedented levels since 1760. This recent growth acceleration was observed in small/young and large/old trees and coincided with the establishment of trees outside the forest range, reflecting a connection between the physiological performance of dominant species and shifts in forest distribution.
View Article and Find Full Text PDFDirect land application as an alternative to green waste (GW) disposal in landfills or composting requires an understanding of its impacts on greenhouse gas (GHG) and volatile organic compound (VOC) emissions. We investigated the effects of two approaches of GW direct land application, surface application and soil incorporation, on carbon dioxide (CO2), nitrous oxide (N2O) and methane (CH4), and VOC emissions for a 12month period. Five treatments were applied in fall 2013 on fallow land under a Mediterranean climate in California: 30cm height GW on surface; 15cm height GW on surface; 15cm height GW tilled into soil; control+till; control+no till.
View Article and Find Full Text PDFRecent observations across a 14-year restoration chronosequence have shown an unexpected accumulation of soil organic carbon in strip-mined areas of central Brazil. This was attributed to the rapid plant colonization that followed the incorporation of biosolids into exposed regoliths, but the specific mechanisms involved in the stabilization of carbon inputs from the vegetation remained unclear. Using isotopic and elemental analyses, we tested the hypothesis that plant-derived carbon accumulation was triggered by the formation of iron-coordinated complexes, stabilized into physically protected (occluded) soil fractions.
View Article and Find Full Text PDFThe presence of mercury (Hg), particularly methylmercury (MeHg), is a concern for both human and ecological health as MeHg is a neurotoxin and can bioaccumulate to lethal levels in upper trophic level organisms. Recent research has demonstrated that coagulation with metal-based salts can effectively remove both inorganic mercury (IHg) and MeHg from solution through association with dissolved organic matter (DOM) and subsequent flocculation and precipitation. In this study, we sought to further examine interactions between Hg and DOM and the resulting organo-metallic precipitate (floc) to assess if (1) newly added IHg could be removed to the same extent as ambient IHg or whether the association between IHg and DOM requires time, and (2) once formed, if the floc has the capacity to remove additional Hg from solution.
View Article and Find Full Text PDFThe influence of carbon dioxide (CO2) and soil fertility on the physiological performance of plants has been extensively studied, but their combined effect is notoriously difficult to predict. Using Coffea arabica as a model tree species, we observed an additive effect on growth, by which aboveground productivity was highest under elevated CO2 and ammonium fertilization, while nitrate fertilization favored greater belowground biomass allocation regardless of CO2 concentration. A pulse of labelled gases ((13)CO2 and (15)NH3) was administered to these trees as a means to determine the legacy effect of CO2 level and soil nitrogen form on foliar gas uptake and translocation.
View Article and Find Full Text PDFMercury pollution is widespread globally, and strategies for managing mercury contamination in aquatic environments are necessary. We tested whether coagulation with metal-based salts could remove mercury from wetland surface waters and decrease mercury bioaccumulation in fish. In a complete randomized block design, we constructed nine experimental wetlands in California's Sacramento-San Joaquin Delta, stocked them with mosquitofish (Gambusia affinis), and then continuously applied agricultural drainage water that was either untreated (control), or treated with polyaluminum chloride or ferric sulfate coagulants.
View Article and Find Full Text PDFAround the world, peatland degradation and soil subsidence is occurring where these soils have been converted to agriculture. Since initial drainage in the mid-1800s, continuous farming of such soils in the California Sacramento-San Joaquin Delta (the Delta) has led to subsidence of up to 8 meters in places, primarily due to soil organic matter (SOM) oxidation and physical compaction. Rice (Oryza sativa) production has been proposed as an alternative cropping system to limit SOM oxidation.
View Article and Find Full Text PDFThe agriculturally productive San Joaquin Valley faces two severe hydrologic issues: persistent groundwater overdraft and flooding risks. Capturing flood flows for groundwater recharge could help address both of these issues, yet flood flow frequency, duration, and magnitude vary greatly as upstream reservoir releases are affected by snowpack, precipitation type, reservoir volume, and flood risks. This variability makes dedicated, engineered recharge approaches expensive.
View Article and Find Full Text PDF