Titanium nitride (TiN) has emerged as a highly promising alternative to traditional plasmonic materials. This study focuses on the inclusion of a CrRu buffer layer between the substrate and thin TiN film, which enables the use of cost-effective, amorphous technical substrates while preserving high film quality. We report best-in-class TiN thin films fabricated on fused silica wafers, achieving a maximum plasmonic figure of merit, -ϵ'/ϵ″, of approximately 2.
View Article and Find Full Text PDFAll-optical switching of magnetization has great potential for use in future ultrafast and energy efficient nanoscale magnetic storage devices. So far, research has been almost exclusively focused on rare-earth based materials, which limits device tunability and scalability. Here, we show that a perpendicularly magnetized synthetic ferrimagnet composed of two distinct transition metal ferromagnetic layers, NiPt and Co, can exhibit helicity independent magnetization switching.
View Article and Find Full Text PDFBeing able to precisely control the reduction of two-dimensional graphene oxide films will open exciting opportunities for tailor-making the functionality of nanodevices with on-demand properties. Here we report the meticulously controlled reduction of individual graphene oxide flakes ranging from single to seven layers through controlled laser irradiation. It is found that the reduction can be customized in such a precise way that the film thickness can be accurately thinned with sub-nanometer resolution, facilitated by extraordinary temperature gradients >10 K nm across the interlayers of graphene oxide films.
View Article and Find Full Text PDFACS Appl Mater Interfaces
April 2020
Confining light in extremely small cavities is crucial in nanophotonics, central to many applications. Employing a unique nanoparticle-on-mirror plasmonic structure and using a graphene film as a spacer, we create nanoscale cavities with volumes of only a few tens of cubic nanometers. The ultracompact cavity produces extremely strong optical near-fields, which facilitate the formation of single carbon quantum dots in the cavity and simultaneously empower the strong coupling between the excitons of the formed carbon quantum dot and the localized surface plasmons.
View Article and Find Full Text PDFExtraordinarily high optical contrast is instrumental to research and applications of two-dimensional materials, such as, for rapid identification of thickness, characterisation of optical properties, and quality assessment. With optimal designs of substrate structures and light illumination conditions, unprecedented optical contrast of MoS on Au surfaces exceeding 430% for monolayer and over 2600% for bilayer is achieved. This is realised on custom-designed substrates of near-zero reflectance near the normal incidence.
View Article and Find Full Text PDFExfoliation of large-area monolayers is important for fundamental research and technological implementation of transition-metal dichalcogenides. Various techniques have been explored to increase the exfoliation yield, but little is known about the underlying mechanism at the atomic level. Here, we demonstrate gold-assisted mechanical exfoliation of monolayer molybdenum disulfide, up to a centimeter scale.
View Article and Find Full Text PDFMetals have been increasingly used as substrates in devices based on two-dimensional (2D) materials. However, the high reflectivity of bulk metals results in low optical contrast (<3%) and therefore poor visibility of transparent mono- and few-layer 2D materials on these surfaces. Here we demonstrate that by engineering the complex reflectivity of a purpose-designed multilayer heterostructure composed of thin Au films (2-8 nm) on SiO/Si substrate, the optical contrast of graphene and graphene oxide (GO) can be significantly enhanced in comparison to bulk Au, up to about 3 and 5 times, respectively.
View Article and Find Full Text PDFWe show that aligned gold nanotube arrays capable of supporting plasmonic resonances can be used as high performance refractive index sensors in biomolecular binding reactions. A methodology to examine the sensing ability of the inside and outside walls of the nanotube structures is presented. The sensitivity of the plasmonic nanotubes is found to increase as the nanotube walls are exposed, and the sensing characteristic of the inside and outside walls is shown to be different.
View Article and Find Full Text PDFFor two-dimensional (2D) arrays of metallic nanorods arranged perpendicular to a substrate several methods have been proposed to determine the electromagnetic near-field distribution and the surface plasmon resonances, but an analytical approach to explain all optical features on the nanometer length scale has been missing to date. To fill this gap, we demonstrate here that the field distribution in such arrays can be understood on the basis of surface plasmon polaritons (SPPs) that propagate along the nanorods and form standing waves. Notably, SPPs couple laterally through their optical near fields, giving rise to collective surface plasmon (CSP) effects.
View Article and Find Full Text PDF