Publications by authors named "William R English"

Cancer is one of the leading causes of death in the 21st century, with metastasis of cancer attributing to 90% of cancer-related deaths. Therefore, to improve patient outcomes there is a need for better preclinical models to increase the success of translating oncological therapies into the clinic. Current traditional staticmodels lack a perfusable network which is critical to overcome the diffusional mass transfer limit to provide a mechanism for the exchange of essential nutrients and waste removal, and increase their physiological relevance.

View Article and Find Full Text PDF

Tumour survival and growth are reliant on angiogenesis, the formation of new blood vessels, to facilitate nutrient and waste exchange and, importantly, provide a route for metastasis from a primary to a secondary site. Whilst current models can ensure the transport and exchange of nutrients and waste via diffusion over distances greater than 200 μm, many lack sufficient vasculature capable of recapitulating the tumour microenvironment and, thus, metastasis. In this study, we utilise gelatin-containing polymerised high internal phase emulsion (polyHIPE) templated polycaprolactone-methacrylate (PCL-M) scaffolds to fabricate a composite material to support the 3D culture of MDA-MB-231 breast cancer cells and vascular ingrowth.

View Article and Find Full Text PDF

Cancer is a becoming a huge social and economic burden on society, becoming one of the most significant barriers to life expectancy in the 21st century. In particular, breast cancer is one of the leading causes of death for women. One of the most significant difficulties to finding efficient therapies for specific cancers, such as breast cancer, is the efficiency and ease of drug development and testing.

View Article and Find Full Text PDF

Sarcomas are heterogeneous and clinically challenging soft tissue and bone cancers. Although constituting only 1% of all human malignancies, sarcomas represent the second most common type of solid tumors in children and adolescents and comprise an important group of secondary malignancies. More than 100 histological subtypes have been characterized to date, and many more are being discovered due to molecular profiling.

View Article and Find Full Text PDF

In this opinion article we critically assess evidence for the existence of a family of antiangiogenic vascular endothelial growth factor (Vegfaxxxb) transcripts, arising from the use of a phylogenetically conserved alternative distal splice site within exon 8 of the VEGFA gene. We explain that prior evidence for Vegfaxxxb transcripts in tissues rests heavily upon flawed RT-PCR methodologies, with the extensive use of 5'-tailing in primer design being the main issue. Furthermore, our analysis of large RNA-seq data sets (human and ovine) fails to identify a single Vegfaxxxb transcript.

View Article and Find Full Text PDF

Over expression of Tissue Inhibitor of Metalloproteinases-3 (TIMP-3) in vascular smooth muscle cells (VSMCs) induces apoptosis and reduces neointima formation occurring after saphenous vein interposition grafting or coronary stenting. In studies to address the mechanism of TIMP-3-driven apoptosis in human VSMCs we find that TIMP-3 increased activation of caspase-8 and apoptosis was inhibited by expression of Cytokine response modifier A (CrmA) and dominant negative FAS-Associated protein with Death Domain (FADD). TIMP-3 induced apoptosis did not cause mitochondrial depolarisation, increase activation of caspase-9 and was not inhibited by over-expression of B-cell Lymphoma 2 (Bcl2), indicating a mitochondrial independent/type-I death receptor pathway.

View Article and Find Full Text PDF

We have found that A Disintegrin And Metalloproteinase-9 (ADAM9) localises to cell-cell junctions with VE-Cadherin in confluent endothelial monolayers. Co-cultures of cells separately transfected with ADAM9-EGFP or ADAM9-HA showed expression is required in two adjacent cells for localisation to cell-cell junctions suggesting the ADAM9 ectodomain may self-associate. A direct interaction between ADAM9 ectodomains was confirmed using recombinant proteins and an ELISA based method.

View Article and Find Full Text PDF

Elevated plasma concentrations of soluble VEGFA isoforms are associated with poor prognosis in parallel with improved response to treatment with the anti-VEGFA antibody bevacizumab. To uncover the underlying mechanism to these observations, we administered anti-VEGFA therapy to mice bearing luminescent mouse fibrosarcomas expressing single VEGFA isoforms or their wild-type counterparts expressing all isoforms (fs120, fs164, fs188, or fsWT). Expression of the more soluble isoforms conferred an advantage for lung metastasis from subcutaneous tumors (fs120/164 vs.

View Article and Find Full Text PDF

One of the main challenges currently faced by tissue engineers is the loss of tissues postimplantation due to delayed neovascularization. Several strategies are under investigation to create vascularized tissue, but none have yet overcome this problem. In this study, we produced a decellularized natural vascular scaffold from rat intestine to use as an in vitro platform for neovascularization studies for tissue-engineered constructs.

View Article and Find Full Text PDF

One of the greatest challenges currently faced in tissue engineering is the incorporation of vascular networks within tissue-engineered constructs. The aim of this study was to develop a technique for producing a perfusable, 3-dimensional, cell-friendly model of vascular structures that could be used to study the factors affecting angiogenesis and vascular biology in engineered systems in more detail. Initially, biodegradable synthetic pseudovascular networks were produced via the combination of robocasting and electrospinning techniques.

View Article and Find Full Text PDF

Vascular endothelial growth factor-A (VEGF) is produced by most cancer cells as multiple isoforms, which display distinct biological activities. VEGF plays an undisputed role in tumour growth, vascularisation and metastasis; nevertheless the functions of individual isoforms in these processes remain poorly understood. We investigated the effects of three main murine isoforms (VEGF188, 164 and 120) on tumour cell behaviour, using a panel of fibrosarcoma cells we developed that express them individually under endogenous promoter control.

View Article and Find Full Text PDF

Angiotensin-I converting enzyme (ACE) is a zinc dependent peptidase with a major role in regulating vasoactive peptide metabolism. ACE, a transmembrane protein, undergoes proteolysis, or shedding, by an as yet unidentified proteinase to release a catalytically active soluble form of the enzyme. Physiologically, soluble ACE in plasma is derived primarily from endothelial cells.

View Article and Find Full Text PDF

Angiogenesis, the formation of new blood vessels, is an essential process for tumour progression and is an area of significant therapeutic interest. Different in vitro systems and more complex in vivo systems have been described for the study of tumour angiogenesis. However, there are few human 3D in vitro systems described to date which mimic the cellular heterogeneity and complexity of angiogenesis within the tumour microenvironment.

View Article and Find Full Text PDF

Oncostatin M receptor (OSMR) shows frequent copy number gain and overexpression in advanced cervical squamous cell carcinoma (SCC). We used cell-based in vitro assays, RNA interference, and integrative gene expression profiling to investigate the functional significance of this observation. CaSki and SW756 were selected as representative cervical SCC cells that overexpressed OSMR, and ME180 and MS751 as cells that did not.

View Article and Find Full Text PDF

ADAMs (a disintegrin and metalloproteinase) are a family of type I transmembrane glycoproteins related to snake venom metalloproteases and disintegrins. They are regulatory proteins that modulate intercellular adhesion and the bioavailability of growth factors, and have been implicated in many disease states, including cancer, immunity and inflammation. One member of the ADAM family, ADAM28, has been reported to bind to the integrin α4β1 in humans; however, the distribution of ADAM28 and the biological consequences of ADAM28-α4β1 interactions are yet to be fully elucidated.

View Article and Find Full Text PDF

Membrane-type-1 matrix metalloproteinase (MT1-MMP) is a zinc-dependent type-I transmembrane metalloproteinase involved in pericellular proteolysis, migration and invasion, with elevated levels correlating with a poor prognosis in cancer. MT1-MMP-mediated transcriptional regulation of genes in cancer cells can contribute to tumour growth, although this is poorly understood at a mechanistic level. In this study, we investigated the mechanism by which MT1-MMP regulates the expression of VEGF-A in breast cancer cells.

View Article and Find Full Text PDF

Membrane-type 1 matrix metalloproteinase (MT1-MMP) is a proteinase involved in the remodelling of extracellular matrix and the cleavage of a number of substrates. MT1-MMP is synthesized as a zymogen that requires intracellular post-translational cleavage to gain biological activity. Furin, a member of the pro-protein convertase family, has been implicated in the proteolytic removal of the MT1-MMP prodomain sequence.

View Article and Find Full Text PDF

Campus parking lot stormwater (CPLSW) runoff can mobilize a variety of constituents from vehicular and atmospheric deposition that may pose risks to receiving aquatic systems. The objective of this study was to characterize CPLSW and to discern potential constituents of concern that may affect aquatic biota in receiving systems. Characterization of CPLSW included analyses of metals, oil and grease, and general water chemistry.

View Article and Find Full Text PDF

The impacts of land disturbance on streams have been studied extensively, but a quantitative mechanism of stream degradation is still lacking. Small changes in land use result in changes in physical and chemical characteristics in the stream, which significantly alter biotic integrity. The objective of this study was to quantify the mechanisms of aquatic ecosystem degradation in streams impacted by watershed urbanization.

View Article and Find Full Text PDF

In our study, we examined the mechanism by which granulocyte-macrophage colony stimulating factor (GM-CSF) regulates angiogenesis using in vitro models. GM-CSF significantly increased precapillary sprout-like formation from endothelial cell spheroids seeded in type-I collagen gels and tubule formation on coculture of endothelial cells with fibroblasts. In both cases, sprout and tubule formation was highly dependent on metalloproteinase activity.

View Article and Find Full Text PDF

We examined the mechanism regulating intercellular cell adhesion molecule-1 (ICAM-1)-dependent monocyte transendothelial migration. Monocyte migration through endothelial cells expressing ICAM-1 alone was comparable to that of tumor necrosis factor-alpha-treated cells. Transmigration was reduced in ICAM-1 lacking the cytoplasmic tail and in tyrosine to alanine substitutions at Tyr-485 and Tyr-474.

View Article and Find Full Text PDF

Membrane-type matrix metalloproteinases (MT-MMP) constitute a subfamily of six distinct membrane-associated MMPs. Although the contribution of MT1-MMP during different steps of cancer progression has been well documented, the significance of other MT-MMPs is rather unknown. We have investigated the involvement of MT4-MMP, a glycosylphosphatidylinositol-anchored protease, in breast cancer progression.

View Article and Find Full Text PDF

Ectodomain shedding has emerged as an important regulatory step in the function of transmembrane proteins. Intercellular adhesion molecule-1 (ICAM-1), an adhesion receptor that mediates inflammatory and immune responses, undergoes shedding in the presence of inflammatory mediators and phorbol 12-myristate 13-acetate (PMA). The shedding of ICAM-1 in ICAM-1-transfected 293 cells upon PMA stimulation and in endothelial cells upon tumor necrosis factor-alpha stimulation was blocked by metalloproteinase inhibitors, whereas serine protease inhibitors were ineffective.

View Article and Find Full Text PDF

ICAM-1, a membrane-bound receptor, is released as soluble ICAM-1 in inflammatory diseases. To delineate mechanisms regulating ICAM-1 cleavage, studies were performed in endothelial cells (EC), human embryonic kidney (HEK)-293 cells transfected with wild-type (WT) ICAM-1, and ICAM-1 containing single tyrosine-to-alanine substitutions (Y474A, Y476A, and Y485A) in the cytoplasmic region. Tyrosine residues at 474 and 485 become phosphorylated upon ICAM-1 ligation and associate with signaling modules.

View Article and Find Full Text PDF

Proteolytic cleavage of the urokinase plasminogen activator receptor (uPA(R)) prevents the binding of uPA and vitronectin while generating biologically active uPAR fragments. We have recently shown that matrix metalloproteinase-12 (MMP-12) releases cellular uPAR-antigen from stimulated human micro-vascular endothelial cells providing a novel feedback mechanism between the plasminogen activation and MMP systems. We now show that MMP-12 and other MMPs directly and efficiently cleave uPAR at the Thr86 paralal Tyr87 peptide bond located in the linker region connecting uPAR domains 1 and 2, releasing the major ligand binding domain 1 from the rest of the receptor.

View Article and Find Full Text PDF