Publications by authors named "William R Crum"

Article Synopsis
  • Alzheimer's disease is a brain condition that leads to memory loss and confusion, making it hard for doctors to diagnose properly.
  • Researchers created a new model using brain scans to help identify whether someone has Alzheimer's, with very high accuracy rates.
  • This new method works better than other tests currently used and could help doctors diagnose Alzheimer's more accurately in the future.
View Article and Find Full Text PDF

Background: Predictive models based on radiomics features are novel, highly promising approaches for gynaecological oncology. Here, we wish to assess the prognostic value of the newly discovered Radiomic Prognostic Vector (RPV) in an independent cohort of high-grade serous ovarian cancer (HGSOC) patients, treated within a Centre of Excellence, thus avoiding any bias in treatment quality.

Methods: RPV was calculated using standardised algorithms following segmentation of routine preoperative imaging of patients (n = 323) who underwent upfront debulking surgery (01/2011-07/2018).

View Article and Find Full Text PDF

Dyskinesia associated with chronic levodopa treatment in Parkinson's disease is associated with maladaptive striatal plasticity. The objective of this study was to examine whether macroscale structural changes, as captured by magnetic resonance imaging (MRI) accompany this plasticity and to identify plausible cellular contributors in a rodent model of levodopa-induced dyskinesia. Adult male Sprague-Dawley rats were rendered hemi-parkinsonian by stereotaxic injection of 6-hydroxydopamine into the left medial forebrain bundle prior to chronic treatment with saline (control) or levodopa to induce abnormal involuntary movements (AIMs), reflective of dyskinesia.

View Article and Find Full Text PDF

Accurate disease monitoring is essential after transarterial chemoembolization (TACE) in hepatocellular carcinoma (HCC) because of the potential for profound adverse events and large variations in survival outcome. Posttreatment changes on conventional imaging can confound determination of residual or recurrent disease, magnifying the clinical challenge. On the basis of increased expression of thymidylate synthase (), thymidine kinase 1 (), and equilibrative nucleoside transporter 1 () in HCC compared with liver tissue, we conducted a proof-of-concept study evaluating the efficacy of 3'-deoxy-3'-F-fluorothymidine (F-FLT) PET to assess response to TACE.

View Article and Find Full Text PDF

The hippocampal formation is a complex brain structure that is important in cognitive processes such as memory, mood, reward processing and other executive functions. Histological and neuroimaging studies have implicated the hippocampal region in neuropsychiatric disorders as well as in neurodegenerative diseases. This highly plastic limbic region is made up of several subregions that are believed to have different functional roles.

View Article and Find Full Text PDF

Parkinson's disease (PD) is the second most common neurodegenerative disorder producing a variety of motor and cognitive deficits with the causes remaining largely unknown. The gradual loss of the nigrostriatal pathway is currently considered the pivotal pathological event. To better understand the progression of PD and improve treatment management, defining the disease on a structural basis and expanding brain analysis to extra-nigral structures is indispensable.

View Article and Find Full Text PDF

A variety of mouse models have been developed that express mutant huntingtin (mHTT) leading to aggregates and inclusions that model the molecular pathology observed in Huntington's disease. Here we show that although homozygous HdhQ150 knock-in mice developed motor impairments (rotarod, locomotor activity, grip strength) by 36 weeks of age, cognitive dysfunction (swimming T maze, fear conditioning, odor discrimination, social interaction) was not evident by 94 weeks. Concomitant to behavioral assessments, T2-weighted MRI volume measurements indicated a slower striatal growth with a significant difference between wild type (WT) and HdhQ150 mice being present even at 15 weeks.

View Article and Find Full Text PDF

Genetic and environmental risk factors for psychiatric disorders are suggested to disrupt the trajectory of brain maturation during adolescence, leading to the development of psychopathology in adulthood. Rodent models are powerful tools to dissect the specific effects of such risk factors on brain maturational profiles, particularly when combined with Magnetic Resonance Imaging (MRI; clinically comparable technology). We therefore investigated the effect of maternal immune activation (MIA), an epidemiological risk factor for adult-onset psychiatric disorders, on rat brain maturation using atlas and tensor-based morphometry analysis of longitudinal in vivo MR images.

View Article and Find Full Text PDF

Extracellular matrix (ECM) is widely used as an inductive biological scaffold to repair soft tissue after injury by promoting functional site-appropriate remodeling of the implanted material. However, there is a lack of non-invasive analysis methods to monitor the remodeling characteristics of the ECM material after implantation and its biodegradation over time. We describe the use of diamagnetic chemical exchange saturation transfer (CEST) magnetic resonance imaging to monitor the distribution of an ECM hydrogel after intracerebral implantation into a stroke cavity.

View Article and Find Full Text PDF

Despite regulation, brain iron increases with aging and may enhance aging processes including neuroinflammation. Increases in magnetic resonance imaging transverse relaxation rates, R2 and R2*, in the brain have been observed during aging. We show R2 and R2* correlate well with iron content via direct correlation to semi-quantitative synchrotron-based X-ray fluorescence iron mapping, with age-associated R2 and R2* increases reflecting iron accumulation.

View Article and Find Full Text PDF

To date, unequivocal neuroanatomical features have been demonstrated neither for sporadic nor for familial schizophrenia. Here, we investigated the neuroanatomical changes in a transgenic rat model for a subset of sporadic chronic mental illness (CMI), which modestly overexpresses human full-length, non-mutant Disrupted-in-Schizophrenia 1 (DISC1), and for which aberrant dopamine homeostasis consistent with some schizophrenia phenotypes has previously been reported. Neuroanatomical analysis revealed a reduced density of dopaminergic neurons in the substantia nigra and reduced dopaminergic fibres in the striatum.

View Article and Find Full Text PDF

Background: Obstructive sleep apnea (OSA) is a chronic, multisystem disorder that has a bidirectional relationship with several major neurological disorders, including Alzheimer's dementia. Treatment with Continuous Positive Airway Pressure (CPAP) offers some protection from the effects of OSA, although it is still unclear which populations should be targeted, for how long, and what the effects of treatment are on different organ systems. We investigated whether cognitive improvements can be achieved as early as one month into CPAP treatment in patients with OSA.

View Article and Find Full Text PDF

Background And Purpose: Histone hypoacetylation is associated with Parkinson's disease (PD), due possibly to an imbalance in the activities of enzymes responsible for histone (de)acetylation; correction of which may be neuroprotective/neurorestorative. This hypothesis was tested using the anti-epileptic drug sodium valproate, a known histone deacetylase inhibitor (HDACI), utilizing a delayed-start study design in the lactacystin rat model of PD.

Experimental Approach: The irreversible proteasome inhibitor lactacystin was unilaterally injected into the substantia nigra of Sprague-Dawley rats that subsequently received valproate for 28 days starting 7 days after lactacystin lesioning.

View Article and Find Full Text PDF

fMRI is increasingly implemented in the clinic to assess memory function. There are multiple approaches to memory fMRI, but limited data on advantages and reliability of different methods. Here, we compared effect size, activation lateralisation, and between-sessions reliability of seven memory fMRI protocols: Hometown Walking (block design), Scene encoding (block design and event-related design), Picture encoding (block and event-related), and Word encoding (block and event-related).

View Article and Find Full Text PDF

Huntington's disease (HD) is caused by the expansion of a CAG repeat in the huntingtin (HTT) gene. The R6 mouse models of HD express a mutant version of exon 1 HTT and typically develop motor and cognitive impairments, a widespread huntingtin (HTT) aggregate pathology and brain atrophy. Unlike the more commonly used R6/2 mouse line, R6/1 mice have fewer CAG repeats and, subsequently, a less rapid pathological decline.

View Article and Find Full Text PDF

The full impact of multisystem disease such as obstructive sleep apnoea (OSA) on regions of the central nervous system is debated, as the subsequent neurocognitive sequelae are unclear. Several preclinical studies suggest that its purported major culprits, intermittent hypoxia and sleep fragmentation, can differentially affect adult hippocampal neurogenesis. Although the prospective biphasic nature of chronic intermittent hypoxia in animal models of OSA has been acknowledged, so far the evidence for increased 'compensatory' neurogenesis in humans is uncertain.

View Article and Find Full Text PDF

Background: Increasing evidence suggests that antipsychotic drugs (APD) might affect brain structure directly, particularly the cerebral cortex. However, the precise anatomical loci of these effects and their underlying cellular basis remain unclear.

Methods: With ex vivo magnetic resonance imaging in rats treated chronically with APDs, we used automated analysis techniques to map the regions that show maximal impact of chronic (8 weeks) treatment with either haloperidol or olanzapine on the rat cortex.

View Article and Find Full Text PDF

To validate and add value to non-invasive imaging techniques, the corresponding histology is required to establish biological correlates. We present an efficient, semi-automated image-processing pipeline that uses immunohistochemically stained sections to reconstruct a 3D brain volume from 2D histological images before registering these with the corresponding 3D in vivo magnetic resonance images (MRI). A multistep registration procedure that first aligns the "global" volume by using the centre of mass and then applies a rigid and affine alignment based on signal intensities is described.

View Article and Find Full Text PDF

Neurological damage, due to conditions such as stroke, results in a complex pattern of structural changes and significant behavioural dysfunctions; the automated analysis of magnetic resonance imaging (MRI) and discovery of structural-behavioural correlates associated with these disorders remains challenging. Voxel lesion symptom mapping (VLSM) has been used to associate behaviour with lesion location in MRI, but this analysis requires the definition of lesion masks on each subject and does not exploit the rich structural information in the images. Tensor-based morphometry (TBM) has been used to perform voxel-wise structural analyses over the entire brain; however, a combination of lesion hyper-intensities and subtle structural remodelling away from the lesion might confound the interpretation of TBM.

View Article and Find Full Text PDF

Diffusion tensor imaging (DTI) tractography and image registration were used to investigate a patient with a massive left-sided brain tumor, whose size was largely disproportionate to his subtle neurological deficits. MRI was obtained from the patient and his healthy identical twin, who acted as anatomical reference for DTI and as a control for quantitative measures. To compensate for the patient's altered anatomy, seed and way points for probabilistic tractography were drawn on the color-coded direction maps of the healthy twin.

View Article and Find Full Text PDF

The size and complexity of brain imaging studies in pre-clinical populations are increasing, and automated image analysis pipelines are urgently required. Pre-clinical populations can be subjected to controlled interventions (e.g.

View Article and Find Full Text PDF

Background: Magnetic resonance imaging (MRI) studies suggest that antipsychotic -treated patients with schizophrenia show a decrease in gray-matter volumes, whereas lithium-treated patients with bipolar disorder show marginal increases in gray-matter volumes. Although these clinical data are confounded by illness, chronicity, and other medications, they do suggest that typical antipsychotic drugs and lithium have contrasting effects on brain volume.

Methods: Rodent models offer a tractable system to test this hypothesis, and we therefore examined the effect of chronic treatment (8 weeks) and subsequent withdrawal (8 weeks) with clinically relevant dosing of an antipsychotic (haloperidol, HAL) or lithium (Li) on brain volume using longitudinal in vivo structural MRI and confirmed the findings postmortem using unbiased stereology.

View Article and Find Full Text PDF

Stroke remains one of the most promising targets for cell therapy. Thorough preclinical efficacy testing of human neural stem cell (hNSC) lines in a rat model of stroke (transient middle cerebral artery occlusion) is, however, required for translation into a clinical setting. Magnetic resonance imaging (MRI) here confirmed stroke damage and allowed the targeted injection of 450,000 hNSCs (CTX0E03) into peri-infarct tissue, rather than the lesion cyst.

View Article and Find Full Text PDF

Although a wide range of approaches have been developed to automatically assess the volume of brain regions from MRI, the reproducibility of these algorithms across different scanners and pulse sequences, their accuracy in different clinical populations and sensitivity to real changes in brain volume have not always been comprehensively examined. Firstly we present a comprehensive testing protocol which comprises 312 freely available MR images to assess the accuracy, reproducibility and sensitivity of automated brain segmentation techniques. Accuracy is assessed in infants, young adults and patients with Alzheimer's disease in comparison to gold standard measures by expert observers using a manual technique based on Cavalieri's principle.

View Article and Find Full Text PDF

Establishing the neurological basis of behavioural dysfunction is key to provide a better understanding of Parkinson's disease (PD) and facilitate development of effective novel therapies. For this, the relationships between longitudinal structural brain changes associated with motor behaviour were determined in a rat model of PD and validated by post-mortem immunohistochemistry. Rats bearing a nigrostriatal lesion induced by infusion of the proteasome inhibitor lactacystin into the left-medial forebrain bundle and saline-injected controls underwent magnetic resonance imaging (MRI) at baseline (prior to surgery) and 1, 3 and 5 weeks post-surgery with concomitant motor assessments consisting of forelimb grip strength, accelerating rotarod, and apormorphine-induced rotation.

View Article and Find Full Text PDF