Publications by authors named "William R Barger"

We formed monolayers and black lipid membranes (BLMs) of photopolymerizable lipids mixed with the channel-forming protein gramicidin A to evaluate their miscibility and the potential for improved stability of the BLM scaffold through polymerization. Analyses of surface pressure vs area isotherms indicated that gramicidin A dispersed with three different synthetic, polymerizable, diacetylene-containing phospholipids, 1,2-di-10,12-tricosadiynoyl-sn-glycero-3-phosphocholine (DTPC), 1,2-di-10,12-tricosadiynoyl-sn-glycero-3-phosphoethanolamine (DTPE), and 1-palmitoyl-2,10,12-tricosadiynoyl-sn-glycero-3-phosphoethanolamine (PTPE) to form mixed monolayers at the air-water interface on a Langmuir-Blodgett (LB) trough. Conductance measurements across a diacetylenic lipid-containing BLM confirmed dispersion of the gramicidin channel with the lipid layer and demonstrated gramicidin ion-channel activity before and after UV exposure.

View Article and Find Full Text PDF

We demonstrate that polymerizable planar membranes permit reconstitution of protein ion channels formed by the bacterial toxins Staphylococcus aureus alpha-hemolysin (alphaHL) and Bacillus anthracis protective antigen 63. The alphaHL channel remained functional even after membrane polymerization. Surface pressure measurements suggest that the ease of forming membranes depends on membrane surface elasticity estimated from Langmuir-Blodgett monolayer pressure-area isotherms.

View Article and Find Full Text PDF