We introduce a non-orthogonal configuration interaction approach to investigate nuclear quantum effects on energies and densities of confined fermionic nuclei. The Hamiltonian employed draws parallels between confined systems and many-electron atoms, where effective non-Coulombic potentials represent the interactions of the trapped particles. One advantage of this method is its generality, as it offers the potential to study the nuclear quantum effects of various confined species affected by effective isotropic or anisotropic potentials.
View Article and Find Full Text PDFCytoreg is an ionic therapeutic agent comprising a mixture of hydrochloric, sulfuric, phosphoric, hydrofluoric, oxalic, and citric acids. In diluted form, it has demonstrated efficacy against human cancers in vitro and in vivo. Although Cytoreg is well tolerated in mice, rats, rabbits, and dogs by oral and intravenous administration, its mechanism of action is not documented.
View Article and Find Full Text PDFIn this work we propose schemes based on the extended Koopmans' theorem for quantum nuclei (eKT), in the framework of the any particle molecular orbital approach (APMO/KT), for the quantitative prediction of gas phase proton affinities (PAs). The performance of these schemes has been tested on a set of 300 organic molecules containing diverse functional groups. The APMO/KT scheme scaled by functional group (APMO/KT-SC-FG) displays an overall mean absolute error of 1.
View Article and Find Full Text PDF