Publications by authors named "William Proctor"

Murine double minute 2 (MDM2) is an E3 ligase that inhibits the tumor suppressor protein p53. Clinical trials employing small-molecule MDM2/p53 interaction inhibitors (SMIs) have demonstrated limited activity, underscoring an unmet need for a better approach to target MDM2. KT 253 is a highly potent and selective heterobifunctional degrader that overcomes the MDM2 feedback loop seen with SMIs and induces apoptosis in a range of hematologic and solid tumor lines.

View Article and Find Full Text PDF

Complex in vitro models (CIVM) offer the potential to improve pharmaceutical clinical drug attrition due to safety and/ or efficacy concerns. For this technology to have an impact, the establishment of robust characterization and qualifi­cation plans constructed around specific contexts of use (COU) is required. This article covers the output from a workshop between the Food and Drug Administration (FDA) and Innovation and Quality Microphysiological Systems (IQ MPS) Affiliate.

View Article and Find Full Text PDF

Purpose: Assessment of non-clinical safety signals relies on understanding species selectivity of antibodies. This is particularly important with antibody-drug conjugates, where it is key to determine target-dependent versus target-independent toxicity. Although it appears to be widely accepted that trastuzumab does not bind mouse or rat HER2/ErbB2/neu, numerous investigators continue to use mouse models to investigate safety signals of trastuzumab and trastuzumab emtansine (T-DM1).

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers are advancing novel 3D cell culture models that better mimic the human biological environment, improving the prediction of drug safety and efficacy.
  • * The article reviews various types of 3D culture systems, their applications in drug testing, the challenges they face, and focuses on specific models related to key organs such as the liver, intestine, kidney, and neurons.
View Article and Find Full Text PDF

Drug-induced liver injury (DILI) continues to be a major cause of drug attrition and restrictive labeling. Given the importance of farnesoid X receptor (FXR) in bile acid homeostasis, drug-related FXR antagonism may be an important mechanism of DILI. However, a comprehensive assessment of this phenomenon broadly in the context of DILI is lacking.

View Article and Find Full Text PDF

Safety related drug failures continue to be a challenge for pharmaceutical companies despite the numerous complex and lengthy in vitro assays and in vivo studies that make up the typical safety screening funnel. A lack of complete translation of animal data to humans can explain some of those shortcomings. Differences in sensitivity and drug disposition between animals and humans may also play a role.

View Article and Find Full Text PDF

The liver is critical to consider during drug development because of its central role in the handling of xenobiotics, a process which often leads to localized and/or downstream tissue injury. Our ability to predict human clinical safety outcomes with animal testing is limited due to species differences in drug metabolism and disposition, while traditional human in vitro liver models often lack the necessary in vivo physiological fidelity. To address this, increasing numbers of liver microphysiological systems (MPS) are being developed, however the inconsistency in their optimization and characterization often leads to models that do not possess critical levels of baseline performance that is required for many pharmaceutical industry applications.

View Article and Find Full Text PDF

Micro-RNA (miR)-122 is a promising exploratory biomarker for detecting liver injury in preclinical and clinical studies. Elevations in serum or plasma have been associated with viral and autoimmune hepatitis, non-alcoholic steatohepatitis (NASH), hepatocellular carcinoma, and drug-induced liver injury (DILI). However, these associations were primarily based upon population differences between the disease state and the controls.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers utilized structure- and ligand-based design methods to create new Na1.7 inhibitors based on piperidyl chromane arylsulfonamide.
  • They improved the drug's effectiveness by refining its chemical structure and reducing its breakdown in the body, leading to the identification of a compound called GNE-616 (24).
  • GNE-616 demonstrated strong performance in experiments with mice and showed selectivity for specific Na1.7 isoforms, which was further studied through site-directed mutagenesis.
View Article and Find Full Text PDF

Drug-related sinusoidal dilatation (SD) is a common form of hepatotoxicity associated with oxaliplatin-based chemotherapy used prior to resection of colorectal liver metastases (CRLM). Recently, hepatic SD has also been associated with anti-delta like 4 (DLL4) cancer therapies targeting the NOTCH pathway. To investigate the hypothesis that NOTCH signaling plays an important role in drug-induced SD, gene expression changes were examined in livers from anti-DLL4 and oxaliplatin-induced SD in non-human primate (NHP) and patients, respectively.

View Article and Find Full Text PDF

Tissue chips are poised to deliver a paradigm shift in drug discovery. By emulating human physiology, these chips have the potential to increase the predictive power of preclinical modeling, which in turn will move the pharmaceutical industry closer to its aspiration of clinically relevant and ultimately animal-free drug discovery. Despite the tremendous science and innovation invested in these tissue chips, significant challenges remain to be addressed to enable their routine adoption into the industrial laboratory.

View Article and Find Full Text PDF

Drug-induced liver injury (DILI) continues to be a major source of clinical attrition, precautionary warnings, and post-market withdrawal of drugs. Accordingly, there is a need for more predictive tools to assess hepatotoxicity risk in drug discovery. Three-dimensional (3D) spheroid hepatic cultures have emerged as promising tools to assess mechanisms of hepatotoxicity, as they demonstrate enhanced liver phenotype, metabolic activity, and stability in culture not attainable with conventional two-dimensional hepatic models.

View Article and Find Full Text PDF

Background: Natural killer (NK)T cells and conventional T cells share phenotypic characteristic however they differ in transcription factor requirements and functional properties. The role of histone modifying enzymes in conventional T cell development has been extensively studied, little is known about the function of enzymes regulating histone methylation in NKT cells.

Results: We show that conditional deletion of histone demethylases UTX and JMJD3 by CD4-Cre leads to near complete loss of liver NKT cells, while conventional T cells are less affected.

View Article and Find Full Text PDF

Transport proteins in intestinal epithelial cells facilitate absorption of nutrients/compounds that are organic anions, cations, and zwitterions. For two decades, we have studied intestinal absorption and transport of hydrophilic ionic compounds, with specific focus on transport properties of organic cations and their interactions with intestinal transporters and tight junction proteins. Our data reveal how complex interactions between a compound and transporters in intestinal apical/basolateral (BL) membranes and tight junction proteins define oral absorption, and that the BL membrane lacks an efflux transporter that can transport positively charged compounds.

View Article and Find Full Text PDF

Discovery toxicology focuses on the identification of the most promising drug candidates through the development and implementation of lead optimization strategies and hypothesis-driven investigation of issues that enable rational and informed decision-making. The major goals are to [a] identify and progress the drug candidate with the best overall drug safety profile for a therapeutic area, [b] remove the most toxic drugs from the portfolio prior to entry into humans to reduce clinical attrition due to toxicity, and [c] establish a well-characterized hazard and translational risk profile to enable clinical trial designs. This is accomplished through a framework that balances the multiple considerations to identify a drug candidate with the overall best drug characteristics and provides a cogent understanding of mechanisms of toxicity.

View Article and Find Full Text PDF
Article Synopsis
  • Clinical evidence suggests that serious drug-induced liver injuries may be caused by the adaptive immune system reacting to drug-protein complexes, a condition known as drug-induced allergic hepatitis, though specific animal models have been lacking.
  • In a study with female Balb/cJ mice, researchers observed liver damage and immune cell infiltration after exposure to halothane, indicating that immune tolerance in the liver can be disrupted.
  • The findings point to potential mechanisms for drug-induced allergic hepatitis that could help develop animal models for further research and suggest that a breakdown in liver tolerance might make individuals more susceptible to this condition.
View Article and Find Full Text PDF

Metformin is the frontline therapy for type II diabetes mellitus. The oral bioavailability of metformin is unexpectedly high, between 40 and 60%, given its hydrophilicity and positive charge at all physiologic pH values. Previous studies in Caco-2 cell monolayers, a cellular model of the human intestinal epithelium, showed that during absorptive transport metformin is taken up into the cells via transporters in the apical (AP) membrane; however, predominant transport to the basolateral (BL) side occurs via the paracellular route because intracellular metformin cannot egress across the BL membrane.

View Article and Find Full Text PDF

Unlabelled: Liver eosinophilia has been associated with incidences of drug-induced liver injury (DILI) for more than 50 years, although its role in this disease has remained largely unknown. In this regard, it was recently shown that eosinophils played a pathogenic role in a mouse model of halothane-induced liver injury (HILI). However, the signaling events that drove hepatic expression of eosinophil-associated chemokines, eotaxins, eosinophil infiltration, and subsequent HILI were unclear.

View Article and Find Full Text PDF

Organic cation transporters (OCTs) are members of the solute carrier 22 family of transporter proteins that are involved in absorption, distribution, and excretion of organic cations. OCT3 is localized in the apical (AP) membrane of enterocytes, but the literature is ambiguous about OCT1 (mOct1) localization, with some evidence suggesting a basolateral (BL) localization in human and mouse enterocytes. This is contrary to our preliminary findings showing AP localization of OCT1 in Caco-2 cell monolayers, an established model of human intestinal epithelium.

View Article and Find Full Text PDF

Sorafenib is an orally active tyrosine kinase inhibitor used in the treatment of renal and hepatocellular carcinoma. This study was designed to establish whether transport proteins are involved in the hepatic uptake of sorafenib and to determine the extent of biliary excretion of sorafenib and its metabolites in human hepatocytes. Initial uptake was assessed in freshly isolated, suspended human hepatocytes in the presence of inhibitors and modulators.

View Article and Find Full Text PDF

Unlabelled: Drug-induced liver injury (DILI) is a major health issue, as it remains difficult to predict which new drugs will cause injury and who will be susceptible to this disease. This is due in part to the lack of animal models and knowledge of susceptibility factors that predispose individuals to DILI. In this regard, liver eosinophilia has often been associated with DILI, although its role remains unclear.

View Article and Find Full Text PDF

Background: Alcohol and tobacco are often used together, and alcoholism is much more common among smokers compared with nonsmokers. Studies in humans suggest that nicotine (an active ingredient in cigarette smoke) can increase the consumption of alcohol. Research on rats and mice demonstrated mixed results; some studies report that nicotine increases alcohol consumption, while others show a decrease in drinking.

View Article and Find Full Text PDF

In a recent study, we reported that interleukin (IL)-4 had a protective role against acetaminophen (APAP)-induced liver injury (AILI), although the mechanism of protection was unclear. Here, we carried out more detailed investigations and have shown that one way IL-4 may control the severity of AILI is by regulating glutathione (GSH) synthesis. In the present studies, the protective role of IL-4 in AILI was established definitively by showing that C57BL/6J mice made deficient in IL-4 genetically (IL-4(-/-)) or by depletion with an antibody, were more susceptible to AILI than mice not depleted of IL-4.

View Article and Find Full Text PDF

The hippocampal N-methyl-D-aspartate receptor (NMDAR) activity plays important roles in cognition and is a major substrate for ethanol-induced memory dysfunction. This receptor is a glutamate-gated ion channel, which is composed of NR1 and NR2 subunits in various brain areas. Although homomeric NR1 subunits form an active ion channel that conducts Na⁺ and Ca²⁺ currents, the incorporation of NR2 subunits allows this channel to be modulated by the Src family of kinases, phosphatases, and by simple molecules such as ethanol.

View Article and Find Full Text PDF
Article Synopsis
  • Alcohol impairs memory by inhibiting NMDA receptor (NMDAR) function, particularly through a reduction in phosphorylation at a specific site on the NR2B subunit in the hippocampus.
  • Previous research indicated that protein tyrosine phosphatases play a role in this inhibition, suggesting that disruptions in their function could impact memory.
  • The study found that removing striatal-enriched protein tyrosine phosphatase (STEP) made NMDAR function more resilient to alcohol's effects, implying that STEP is necessary for ethanol-induced memory loss by affecting the phosphorylation of NR2B receptors.
View Article and Find Full Text PDF