Publications by authors named "William Plishker"

This study assessed the feasibility and functionality of the use of a high-speed image fusion technology to generate and display positron emission tomography (PET)/computed tomography (CT) fluoroscopic images during PET/CT-guided tumor ablation procedures. Thirteen patients underwent 14 PET/CT-guided ablations for the treatment of 20 tumors. A Food and Drug Administration-cleared multimodal image fusion platform received images pushed from a scanner, followed by near-real-time, nonrigid image registration.

View Article and Find Full Text PDF

Purpose: Microsoft HoloLens is a pair of augmented reality (AR) smart glasses that could improve the intraprocedural visualization of ultrasound-guided procedures. With the wearable HoloLens headset, an ultrasound image can be virtually rendered and registered with the ultrasound transducer and placed directly in the practitioner's field of view.

Methods: A custom application, called HoloUS, was developed using the HoloLens and a portable ultrasound machine connected through a wireless network.

View Article and Find Full Text PDF

When preprocedural images are overlaid on intraprocedural images, interventional procedures benefit in that more structures are revealed in intraprocedural imaging. However, image artifacts, respiratory motion, and challenging scenarios could limit the accuracy of multimodality image registration necessary before image overlay. Ensuring the accuracy of registration during interventional procedures is therefore critically important.

View Article and Find Full Text PDF

The purpose of this work was to develop a new method of tracking a laparoscopic ultrasound (LUS) transducer in laparoscopic video by combining the hardware [e.g., electromagnetic (EM)] and the computer vision-based (e.

View Article and Find Full Text PDF

Purpose: For laparoscopic ablation to be successful, accurate placement of the needle to the tumor is essential. Laparoscopic ultrasound is an essential tool to guide needle placement, but the ultrasound image is generally presented separately from the laparoscopic image. We aim to evaluate an augmented reality (AR) system which combines laparoscopic ultrasound image, laparoscope video, and the needle trajectory in a unified view.

View Article and Find Full Text PDF

Surgical tool tracking has a variety of applications in different surgical scenarios. Electromagnetic (EM) tracking can be utilised for tool tracking, but the accuracy is often limited by magnetic interference. Vision-based methods have also been suggested; however, tracking robustness is limited by specular reflection, occlusions, and blurriness observed in the endoscopic image.

View Article and Find Full Text PDF

Introduction: Intraoperative imaging, such as ultrasound, provides subsurface anatomical information not seen by standard laparoscopy. Currently, information from the two modalities may only be integrated in the surgeon's mind, an often distracting and inefficient task. The desire to improve intraoperative efficiency has guided the development of a novel, augmented reality (AR) laparoscopic system that integrates, in real time, laparoscopic ultrasound (LUS) images with the laparoscopic video.

View Article and Find Full Text PDF

Cone-beam CT (CBCT) is a widely used intra-operative imaging modality in image-guided radiotherapy and surgery. A short scan followed by a filtered-backprojection is typically used for CBCT reconstruction. While data on the mid-plane (plane of source-detector rotation) is complete, off-mid-planes undergo different information deficiency and the computed reconstructions are approximate.

View Article and Find Full Text PDF

Purpose: Accurate tracking of anatomical changes and computation of actually delivered dose to the patient are critical for successful adaptive radiation therapy (ART). Additionally, efficient data management and fast processing are practically important for the adoption in clinic as ART involves a large amount of image and treatment data. The purpose of this study was to develop an accurate and efficient Software platform for CUmulative Dose Assessment (scuda) that can be seamlessly integrated into the clinical workflow.

View Article and Find Full Text PDF

The purpose of this work was to develop a clinically viable laparoscopic augmented reality (AR) system employing stereoscopic (3-D) vision, laparoscopic ultrasound (LUS), and electromagnetic (EM) tracking to achieve image registration. We investigated clinically feasible solutions to mount the EM sensors on the 3-D laparoscope and the LUS probe. This led to a solution of integrating an externally attached EM sensor near the imaging tip of the LUS probe, only slightly increasing the overall diameter of the probe.

View Article and Find Full Text PDF

The images generated during radiation oncology treatments provide a valuable resource to conduct analysis for personalized therapy, outcomes prediction, and treatment margin optimization. Deformable image registration (DIR) is an essential tool in analyzing these images. We are enhancing and examining DIR with the contributions of this paper: 1) implementing and investigating a cloud and graphic processing unit (GPU) accelerated DIR solution and 2) assessing the accuracy and flexibility of that solution on planning computed tomography (CT) with cone-beam CT (CBCT).

View Article and Find Full Text PDF

Background: With the introduction of hybrid positron emission tomography/magnetic resonance imaging (PET/MRI), a new imaging option to acquire multimodality images with complementary anatomical and functional information has become available. Compared with hybrid PET/computed tomography (CT), hybrid PET/MRI is capable of providing superior anatomical detail while removing the radiation exposure associated with CT. The early adoption of hybrid PET/MRI, however, has been limited.

View Article and Find Full Text PDF

Purpose: Common camera calibration methods employed in current laparoscopic augmented reality systems require the acquisition of multiple images of an entire checkerboard pattern from various poses. This lengthy procedure prevents performing laparoscope calibration in the operating room (OR). The purpose of this work was to develop a fast calibration method for electromagnetically (EM) tracked laparoscopes, such that the calibration can be performed in the OR on demand.

View Article and Find Full Text PDF

Rationale And Objectives: Accuracy and speed are essential for the intraprocedural nonrigid magnetic resonance (MR) to computed tomography (CT) image registration in the assessment of tumor margins during CT-guided liver tumor ablations. Although both accuracy and speed can be improved by limiting the registration to a region of interest (ROI), manual contouring of the ROI prolongs the registration process substantially. To achieve accurate and fast registration without the use of an ROI, we combined a nonrigid registration technique on the basis of volume subdivision with hardware acceleration using a graphics processing unit (GPU).

View Article and Find Full Text PDF

Conventional radiotherapy is planned using free-breathing computed tomography (CT), ignoring the motion and deformation of the anatomy from respiration. New breath-hold-synchronized, gated, and four-dimensional (4D) CT acquisition strategies are enabling radiotherapy planning utilizing a set of CT scans belonging to different phases of the breathing cycle. Such 4D treatment planning relies on the availability of tumor and organ contours in all phases.

View Article and Find Full Text PDF