Publications by authors named "William Planer"

β-glycoprotein I (βGPI) is an abundant multidomain plasma protein that plays various roles in the clotting and complement cascades. It is also the main target of antiphospholipid antibodies (aPL) in the acquired coagulopathy known as antiphospholipid syndrome (APS). Previous studies have shown that βGPI adopts two interconvertible biochemical conformations, oxidized and reduced, depending on the integrity of the disulfide bonds.

View Article and Find Full Text PDF

β2-Glycoprotein I (β2-GPI) is an abundant plasma glycoprotein with unknown physiological function and is currently recognized as the main target of antiphospholipid Abs responsible for complement activation and vascular thrombosis in patients with antiphospholipid syndrome (APS). In this study, we provide evidence that mannose-binding lectin (MBL) binds to β2-GPI in Ca and a dose-dependent manner and that this interaction activates complement and promotes complement-dependent thrombin generation. Surprisingly, a significant binding was observed between MBL and isolated domains II and IV of β2-GPI, whereas the carbohydrate chains, domain I and domain V, were not involved in the interaction, documenting a noncanonical binding mode between MBL and β2-GPI.

View Article and Find Full Text PDF

β-Glycoprotein I (βGPI) is an abundant plasma protein displaying phospholipid-binding properties. Because it binds phospholipids, it is a target of antiphospholipid antibodies (aPLs) in antiphospholipid syndrome (APS), a life-threatening autoimmune thrombotic disease. Indeed, aPLs prefer membrane-bound βGPI to that in solution.

View Article and Find Full Text PDF

Anti-phosphatidylserine/prothrombin (aPS/PT) antibodies are often detected in patients with antiphospholipid syndrome (APS), but how aPS/PT engage prothrombin at the molecular level remains unknown. Here, the antigenic determinants of immunoglobulin G aPS/PT were investigated in 24 triple-positive APS patients at high risk of thrombosis by using prothrombin mutants biochemically trapped in closed and open conformations, and relevant fragments spanning the entire length of prothrombin. Two novel unexpected findings emerged from these studies.

View Article and Find Full Text PDF

Coagulation factor II, or prothrombin, is a multi-domain glycoprotein that is essential for life and a key target of anticoagulant therapy. In plasma, prothrombin circulates in two forms at equilibrium, "closed" (~80%) and "open" (~20%), brokered by the flexibility of the linker regions. Its structure remained elusive until recently when our laboratory solved the first X-ray crystal structure of the zymogen locked in the predominant closed form.

View Article and Find Full Text PDF

The endogenous neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) is secreted by both neuronal and non-neuronal cells in the brain and spinal cord, in response to pathological conditions such as stroke, seizures, chronic inflammatory and neuropathic pain. PACAP has been shown to exert various neuromodulatory and neuroprotective effects. However, direct influence of PACAP on the function of intrinsically excitable ion channels that are critical to both hyperexcitation as well as cell death, remain largely unexplored.

View Article and Find Full Text PDF

Optogenetics has provided a revolutionary approach to dissecting biological phenomena. However, the generation and use of optically active GPCRs in these contexts is limited and it is unclear how well an opsin-chimera GPCR might mimic endogenous receptor activity. Here we show that a chimeric rhodopsin/β2 adrenergic receptor (opto-β2AR) is similar in dynamics to endogenous β2AR in terms of: cAMP generation, MAP kinase activation and receptor internalization.

View Article and Find Full Text PDF

Optogenetics is now a widely accepted tool for spatiotemporal manipulation of neuronal activity. However, a majority of optogenetic approaches use binary on/off control schemes. Here, we extend the optogenetic toolset by developing a neuromodulatory approach using a rationale-based design to generate a Gi-coupled, optically sensitive, mu-opioid-like receptor, which we term opto-MOR.

View Article and Find Full Text PDF

We determined the role of carboxyl-terminal regulation of NOPR (nociceptin, orphanin FQ receptor) signaling and function. We mutated C-terminal serine and threonine residues and examined their role in NOPR trafficking, homologous desensitization, and arrestin-dependent MAPK signaling. The NOPR agonist, nociceptin, caused robust NOPR-YFP receptor internalization, peaking at 30 min.

View Article and Find Full Text PDF

Ret signaling is critical for formation of the enteric nervous system (ENS) because Ret activation promotes ENS precursor survival, proliferation, and migration and provides trophic support for mature enteric neurons. Although these roles are well established, we now provide evidence that increasing levels of the Ret ligand glial cell line-derived neurotrophic factor (GDNF) in mice causes alterations in ENS structure and function that are critically dependent on the time and location of increased GDNF availability. This is demonstrated using two different strains of transgenic mice and by injecting newborn mice with GDNF.

View Article and Find Full Text PDF

Hirschsprung disease (distal intestinal aganglionosis, HSCR) is a multigenic disorder with incomplete penetrance, variable expressivity, and a strong male gender bias. Recent studies demonstrated that these genetic patterns arise because gene interactions determine whether enteric nervous system (ENS) precursors successfully proliferate and migrate into the distal bowel. We now demonstrate that male gender bias in the extent of distal intestinal aganglionosis occurs in mice with Ret dominant-negative mutations (RetDN) that mimic human HSCR.

View Article and Find Full Text PDF