Publications by authors named "William P Wergin"

This study, which uses low-temperature scanning electron microscopy (LTSEM), systematically sampled and characterized snow crystals that were collected from three unique classes of snow cover: prairie, taiga, and alpine. These classes, which were defined in previous field studies, result from exposure to unique climatic variables relating to wind, precipitation, and air temperature. Snow samples were taken at 10 cm depth intervals from the walls of freshly excavated snow pits.

View Article and Find Full Text PDF

Observations were made of cryo-preserved honey bee tracheal mites Acarapis woodi (Rennie) using scanning electron microscopy. We describe various new morphological attributes of A. woodi based on the ability of the cryo-technique to capture live mites in natural positions and observe the Low-Temperature Scanning Electron Microscopy (LT-SEM) photographs under a 3-D viewer.

View Article and Find Full Text PDF

The morphology of the antenna of the red imported fire ant, Solenopsis invicta, was examined by light microscopy, scanning electron microscopy, and transmission electron microscopy. The antennae are sexually dimorphic: the worker antenna has porous sensilla on the two distal segments (the antennal club), whereas the clubless male antenna has porous sensilla on all segments past the pedicel. The major type of porous sensilla on both male and female is sensilla tricodea curvata.

View Article and Find Full Text PDF

Methods to collect, transport, and store samples of snow and ice have been developed that enable detailed observations of these samples with a technique known as low-temperature scanning electron microscopy (LTSEM). This technique increases the resolution and ease with which samples of snow and ice can be observed, studied, and photographed. Samples are easily collected in the field and have been shipped to the electron microscopy laboratory by common air carrier from distances as far as 5,000 miles.

View Article and Find Full Text PDF

Snow crystals, which form by vapor deposition, occasionally come in contact with supercooled cloud droplets during their formation and descent. When this occurs, the droplets adhere and freeze to the snow crystals in a process known as accretion. During the early stages of accretion, discrete snow crystals exhibiting frozen cloud droplets are referred to as rime.

View Article and Find Full Text PDF

For nearly 50 years, investigators using light microscopy have vaguely alluded to a unique type of snow crystal that has become known as an irregular snow crystal. However, the limited resolution and depth-of-field of the light microscope has prevented investigators from characterizing these crystals. In this study, a field-emission scanning electron microscope, equipped with a cold stage, was used to document the structural features, physical associations, and atmospheric metamorphosis of irregular snow crystals.

View Article and Find Full Text PDF