WD40 Repeat Domain 5 (WDR5) is a highly conserved nuclear protein that recruits MYC oncoprotein transcription factors to chromatin to stimulate ribosomal protein gene expression. WDR5 is tethered to chromatin via an arginine-binding cavity known as the "WIN" site. Multiple pharmacological inhibitors of the WDR5-interaction site of WDR5 (WINi) have been described, including those with picomolar affinity and oral bioavailability in mice.
View Article and Find Full Text PDFThe chromatin-associated protein WD Repeat Domain 5 (WDR5) is a promising target for cancer drug discovery, with most efforts blocking an arginine-binding cavity on the protein called the 'WIN' site that tethers WDR5 to chromatin. WIN site inhibitors (WINi) are active against multiple cancer cell types in vitro, the most notable of which are those derived from MLL-rearranged (MLLr) leukemias. Peptidomimetic WINi were originally proposed to inhibit MLLr cells via dysregulation of genes connected to hematopoietic stem cell expansion.
View Article and Find Full Text PDFBackground: During mitosis the cell depends on proper attachment and segregation of replicated chromosomes to generate two identical progeny. In cancers defined by overexpression or dysregulation of the MYC oncogene this process becomes impaired, leading to genomic instability and tumor evolution. Recently it was discovered that the chromatin regulator WDR5-a critical MYC cofactor-regulates expression of genes needed in mitosis through a direct interaction with the master kinase PDPK1.
View Article and Find Full Text PDFMutations in the SWI/SNF chromatin remodeling complex occur in ~20% of cancers. In rhabdoid tumors defined by loss of the SWI/SNF subunit , dysregulation of enhancer-mediated gene expression is pivotal in driving oncogenesis. Enhancer dysregulation in this setting is tied to retention of the SWI/SNF ATPase BRG1-which becomes essential in the absence of -but precisely how BRG1 contributes to this process remains unknown.
View Article and Find Full Text PDFWDR5 is a conserved nuclear protein that scaffolds the assembly of epigenetic regulatory complexes and moonlights in functions ranging from recruiting MYC oncoproteins to chromatin to facilitating the integrity of mitosis. It is also a high-value target for anti-cancer therapies, with small molecule WDR5 inhibitors and degraders undergoing extensive preclinical assessment. WDR5 inhibitors were originally conceived as epigenetic modulators, proposed to inhibit cancer cells by reversing oncogenic patterns of histone H3 lysine 4 methylation-a notion that persists to this day.
View Article and Find Full Text PDFThe chromatin-associated protein WDR5 (WD repeat domain 5) is an essential cofactor for MYC and a conserved regulator of ribosome protein gene transcription. It is also a high-profile target for anti-cancer drug discovery, with proposed utility against both solid and hematological malignancies. We have previously discovered potent dihydroisoquinolinone-based WDR5 WIN-site inhibitors with demonstrated efficacy and safety in animal models.
View Article and Find Full Text PDFThe chromatin-associated protein WD Repeat Domain 5 (WDR5) is a promising target for cancer drug discovery, with most efforts blocking an arginine-binding cavity on the protein called the "WIN" site that tethers WDR5 to chromatin. WIN site inhibitors (WINi) are active against multiple cancer cell types in vitro, the most notable of which are those derived from MLL-rearranged (MLLr) leukemias. Peptidomimetic WINi were originally proposed to inhibit MLLr cells via dysregulation of genes connected to hematopoietic stem cell expansion.
View Article and Find Full Text PDFCollectively, the MYC family of oncoprotein transcription factors is overexpressed in more than half of all malignancies. The ability of MYC proteins to access chromatin is fundamental to their role in promoting oncogenic gene expression programs in cancer and this function depends on MYC-cofactor interactions. One such cofactor is the chromatin regulator WDR5, which in models of Burkitt lymphoma facilitates recruitment of the c-MYC protein to chromatin at genes associated with protein synthesis, allowing for tumor progression and maintenance.
View Article and Find Full Text PDFWD repeat domain 5 (WDR5) is a core scaffolding component of many multiprotein complexes that perform a variety of critical chromatin-centric processes in the nucleus. WDR5 is a component of the mixed lineage leukemia MLL/SET complex and localizes MYC to chromatin at tumor-critical target genes. As a part of these complexes, WDR5 plays a role in sustaining oncogenesis in a variety of human cancers that are often associated with poor prognoses.
View Article and Find Full Text PDFThe SWI/SNF chromatin remodeling complex uses the energy of ATP hydrolysis to alter contacts between DNA and nucleosomes, allowing regions of the genome to become accessible for biological processes such as transcription. The SWI/SNF chromatin remodeler is also one of the most frequently altered protein complexes in cancer, with upwards of 20% of all cancers carrying mutations in a SWI/SNF subunit. Intense studies over the last decade have probed the molecular events associated with SWI/SNF dysfunction in cancer and common themes are beginning to emerge in how tumor-associated SWI/SNF mutations promote malignancy.
View Article and Find Full Text PDFMalignant rhabdoid tumor (MRT) is driven by the loss of the SNF5 subunit of the SWI/SNF chromatin remodeling complex and then thought to be maintained by residual SWI/SNF (rSWI/SNF) complexes that remain present in the absence of SNF5. rSWI/SNF subunits colocalize extensively on chromatin with the transcription factor MYC, an oncogene identified as a novel driver of MRT. Currently, the role of rSWI/SNF in modulating MYC activity has neither been delineated nor has a direct link between rSWI/SNF and other oncogenes been uncovered.
View Article and Find Full Text PDFSlowly cycling/infrequently proliferating tumor cells present a clinical challenge due to their ability to evade treatment. Previous studies established that high levels of SOX2 in both fetal and tumor cells restrict cell proliferation and induce a slowly cycling state. However, the mechanisms through which elevated SOX2 levels inhibit tumor cell proliferation have not been identified.
View Article and Find Full Text PDFWD repeat domain 5 (WDR5) is a nuclear scaffolding protein that forms many biologically important multiprotein complexes. The WIN site of WDR5 represents a promising pharmacological target in a variety of human cancers. Here, we describe the optimization of our initial WDR5 WIN-site inhibitor using a structure-guided pharmacophore-based convergent strategy to improve its druglike properties and pharmacokinetic profile.
View Article and Find Full Text PDFRhabdoid tumors (RT) are rare and deadly pediatric cancers driven by loss of , which encodes the SNF5 component of the SWI/SNF chromatin remodeler. Loss of is associated with a complex set of phenotypic changes including vulnerability to inhibitors of protein synthesis and of the p53 ubiquitin-ligase HDM2. Recently, we discovered small molecule inhibitors of the 'WIN' site of WDR5, which in MLL-rearranged leukemia cells decrease the expression of a set of genes linked to protein synthesis, inducing a translational choke and causing p53-dependent inhibition of proliferation.
View Article and Find Full Text PDFWDR5 nucleates the assembly of histone-modifying complexes and acts outside this context in a range of chromatin-centric processes. WDR5 is also a prominent target for pharmacological inhibition in cancer. Small-molecule degraders of WDR5 have been described, but most drug discovery efforts center on blocking the WIN site of WDR5, an arginine binding cavity that engages MLL/SET enzymes that deposit histone H3 lysine 4 methylation (H3K4me).
View Article and Find Full Text PDFGenome-wide nuclear run-ons are a powerful way to determine the impact of a perturbation such as transcription factor degradation on transcriptional patterns. But often investigators are interested in monitoring transcriptional effects at specific sets of genes, rather than the entire genome. Here we describe an approach that couples genome engineering to tag endogenous proteins for degradation with a streamlined nuclear run-on assay to yield gene-specific information on primary transcriptional changes elicited by factor depletion.
View Article and Find Full Text PDFThe SNF5 subunit of the SWI/SNF chromatin remodeling complex has been shown to act as a tumor suppressor through multiple mechanisms, including impairing the ability of the oncoprotein transcription factor MYC to bind chromatin. Beyond SNF5, however, it is unknown to what extent MYC can access additional SWI/SNF subunits or how these interactions affect the ability of MYC to drive transcription, particularly in SNF5-null cancers. Here, we report that MYC interacts with multiple SWI/SNF components independent of SNF5.
View Article and Find Full Text PDFEffective treatment of pediatric solid tumors has been hampered by the predominance of currently "undruggable" driver transcription factors. Improving outcomes while decreasing the toxicity of treatment necessitates the development of novel agents that can directly inhibit or degrade these elusive targets. MYCN in pediatric neural-derived tumors, including neuroblastoma and medulloblastoma, is a paradigmatic example of this problem.
View Article and Find Full Text PDFThe chromatin-associated protein WDR5 is a promising pharmacological target in cancer, with most drug discovery efforts directed against an arginine-binding cavity in WDR5 called the WIN site. Despite a clear expectation that WIN site inhibitors will alter the repertoire of WDR5 interaction partners, their impact on the WDR5 interactome remains unknown. Here, we use quantitative proteomics to delineate how the WDR5 interactome is changed by WIN site inhibition.
View Article and Find Full Text PDFThe oncoprotein transcription factor MYC is a major driver of malignancy and a highly validated but challenging target for the development of anticancer therapies. Novel strategies to inhibit MYC may come from understanding the co-factors it uses to drive pro-tumorigenic gene expression programs, providing their role in MYC activity is understood. Here we interrogate how one MYC co-factor, host cell factor (HCF)-1, contributes to MYC activity in a human Burkitt lymphoma setting.
View Article and Find Full Text PDFThe frequent deregulation of MYC and its elevated expression via multiple mechanisms drives cells to a tumorigenic state. Indeed, MYC is overexpressed in up to ∼50% of human cancers and is considered a highly validated anticancer target. Recently, we discovered that WD repeat-containing protein 5 (WDR5) binds to MYC and is a critical cofactor required for the recruitment of MYC to its target genes and reported the first small molecule inhibitors of the WDR5-MYC interaction using structure-based design.
View Article and Find Full Text PDFThe oncoprotein transcription factor MYC is overexpressed in most cancers and is responsible for hundreds of thousands of cancer deaths worldwide every year. MYC is also a highly validated - but currently undruggable - anti-cancer target. We recently showed that breaking the interaction of MYC with its chromatin co-factor WD repeat-containing protein 5 (WDR5) promotes tumor regression in mouse xenografts, laying the foundation for a new strategy to inhibit MYC in the clinic.
View Article and Find Full Text PDFWDR5 is a highly-conserved nuclear protein that performs multiple scaffolding functions in the context of chromatin. WDR5 is also a promising target for pharmacological inhibition in cancer, with small molecule inhibitors of an arginine-binding pocket of WDR5 (the 'WIN' site) showing efficacy against a range of cancer cell lines in vitro. Efforts to understand WDR5, or establish the mechanism of action of WIN site inhibitors, however, are stymied by its many functions in the nucleus, and a lack of knowledge of the conserved gene networks-if any-that are under its control.
View Article and Find Full Text PDFWD repeat domain 5 (WDR5) is a member of the WD40-repeat protein family that plays a critical role in multiple chromatin-centric processes. Overexpression of WDR5 correlates with a poor clinical outcome in many human cancers, and WDR5 itself has emerged as an attractive target for therapy. Most drug-discovery efforts center on the WIN site of WDR5 that is responsible for the recruitment of WDR5 to chromatin.
View Article and Find Full Text PDF