Publications by authors named "William P Robins"

Defense systems that recognize viruses provide important insights into both prokaryotic and eukaryotic innate immunity mechanisms. Such systems that restrict foreign DNA or trigger cell death have recently been recognized, but the molecular signals that activate many of these remain largely unknown. Here, we characterize one such system in pandemic Vibrio cholerae responsible for triggering cell density-dependent death (CDD) of cells in response to the presence of certain genetic elements.

View Article and Find Full Text PDF

SARS-CoV-2 is one of three recognized coronaviruses (CoVs) that have caused epidemics or pandemics in the 21st century and that likely emerged from animal reservoirs. Differences in nucleotide and protein sequence composition within related β-coronaviruses are often used to better understand CoV evolution, host adaptation, and their emergence as human pathogens. Here we report the comprehensive analysis of amino acid residue changes that have occurred in lineage B β-coronaviruses that show covariance with each other.

View Article and Find Full Text PDF

SARS-CoV-2 is one of three recognized coronaviruses (CoVs) that have caused epidemics or pandemics in the 21st century and that likely emerged from animal reservoirs. Differences in nucleotide and protein sequence composition within related β-coronaviruses are often used to better understand CoV evolution, host adaptation, and their emergence as human pathogens. Here we report the comprehensive analysis of amino acid residue changes that have occurred in lineage B β-coronaviruses that show covariance with each other.

View Article and Find Full Text PDF

The genomes of gut Bacteroidales contain numerous invertible regions, many of which contain promoters that dictate phase-variable synthesis of surface molecules such as polysaccharides, fimbriae, and outer surface proteins. Here, we characterize a different type of phase-variable system of Bacteroides fragilis, a Type I restriction modification system (R-M). We show that reversible DNA inversions within this R-M locus leads to the generation of eight specificity proteins with distinct recognition sites.

View Article and Find Full Text PDF

SARS-CoV-2 is one of three recognized coronaviruses (CoVs) that have caused epidemics or pandemics in the 21 century and that have likely emerged from animal reservoirs based on genomic similarities to bat and other animal viruses. Here we report the analysis of conserved interactions between amino acid residues in proteins encoded by SARS-CoV-related viruses. We identified pairs and networks of residue variants that exhibited statistically high frequencies of covariance with each other.

View Article and Find Full Text PDF

Lytic transglycosylases (LT) are enzymes involved in peptidoglycan (PG) remodeling. However, their contribution to cell-wall-modifying complexes and their potential as antimicrobial drug targets remains unclear. Here, we determined a high-resolution structure of the LT, an outer membrane lipoprotein from species with a disordered active site helix (alpha helix 30).

View Article and Find Full Text PDF

Enteroendocrine cells (EEs) are interspersed between enterocytes and stem cells in the Drosophila intestinal epithelium. Like enterocytes, EEs express components of the immune deficiency (IMD) innate immune pathway, which activates transcription of genes encoding antimicrobial peptides. The discovery of large lipid droplets in intestines of IMD pathway mutants prompted us to investigate the role of the IMD pathway in the host metabolic response to its intestinal microbiota.

View Article and Find Full Text PDF

The peptidoglycan cell wall provides an essential protective barrier in almost all bacteria, defining cellular morphology and conferring resistance to osmotic stress and other environmental hazards. The precursor to peptidoglycan, lipid II, is assembled on the inner leaflet of the plasma membrane. However, peptidoglycan polymerization occurs on the outer face of the plasma membrane, and lipid II must be flipped across the membrane by the MurJ protein before its use in peptidoglycan synthesis.

View Article and Find Full Text PDF

Elongation of rod-shaped bacteria is mediated by a dynamic peptidoglycan-synthetizing machinery called the Rod complex. Here we report that, in Bacillus subtilis, this complex is functional in the absence of all known peptidoglycan polymerases. Cells lacking these enzymes survive by inducing an envelope stress response that increases the expression of RodA, a widely conserved core component of the Rod complex.

View Article and Find Full Text PDF

Vibrio cholerae is lethal to the model host Drosophila melanogaster through mechanisms not solely attributable to cholera toxin. To examine additional virulence determinants, we performed a genetic screen in V. cholerae-infected Drosophila and identified the two-component system CrbRS.

View Article and Find Full Text PDF

In El Tor biotype strains of toxigenic Vibrio cholerae, the CTXϕ prophage often resides adjacent to a chromosomally integrated satellite phage genome, RS1, which produces RS1ϕ particles by using CTX prophage-encoded morphogenesis proteins. RS1 encodes RstC, an antirepressor against the CTXϕ repressor RstR, which cooperates with the host-encoded LexA protein to maintain CTXϕ lysogeny. We found that superinfection of toxigenic El Tor strains with RS1ϕ, followed by inoculation of the transductants into the adult rabbit intestine, caused elimination of the resident CTX prophage-producing nontoxigenic derivatives at a high frequency.

View Article and Find Full Text PDF

Correlation between the numbers of Vibrio parahaemolyticus and its specific bacteriophages in cockles was investigated from June 2009 to May 2010 in Hat Yai, Songkhla, Thailand. Cockles obtained monthly from a local market were sampled to determine the numbers of V. parahaemolyticus and bacteriophages that could form plaques on ten strains of pandemic and nonpandemic V.

View Article and Find Full Text PDF

Modern genomic and bioinformatic approaches have been applied to interrogate the V. cholerae genome, the role of genomic elements in cholera disease, and the origin, relatedness, and dissemination of epidemic strains. A universal attribute of choleragenic strains includes a repertoire of pathogenicity islands and virulence genes, namely the CTXϕ prophage and Toxin Co-regulated Pilus (TCP) in addition to other virulent genetic elements including those referred to as Seventh Pandemic Islands.

View Article and Find Full Text PDF

The sequence of a protein determines its function by influencing its folding, structure, and activity. Similarly, the most conserved residues of orthologous and paralogous proteins likely define those most important. The detection of important or essential residues is not always apparent via sequence alignments because these are limited by the depth of any given gene's phylogeny, as well as specificities that relate to each protein's unique biological origin.

View Article and Find Full Text PDF

Advances in DNA sequencing technology have improved our ability to characterize most genomic diversity. However, accurate resolution of large structural events is challenging because of the short read lengths of second-generation technologies. Third-generation sequencing technologies, which can yield longer multikilobase reads, have the potential to address limitations associated with genome assembly.

View Article and Find Full Text PDF

Pathogens adapt to the host environment by altering their patterns of gene expression. Microarray-based and genetic techniques used to characterize bacterial gene expression during infection are limited in their ability to comprehensively and simultaneously monitor genome-wide transcription. We used massively parallel cDNA sequencing (RNA-seq) techniques to quantitatively catalog the transcriptome of the cholera pathogen, Vibrio cholerae, derived from two animal models of infection.

View Article and Find Full Text PDF

Background: Although cholera has been present in Latin America since 1991, it had not been epidemic in Haiti for at least 100 years. Recently, however, there has been a severe outbreak of cholera in Haiti.

Methods: We used third-generation single-molecule real-time DNA sequencing to determine the genome sequences of 2 clinical Vibrio cholerae isolates from the current outbreak in Haiti, 1 strain that caused cholera in Latin America in 1991, and 2 strains isolated in South Asia in 2002 and 2008.

View Article and Find Full Text PDF