Publications by authors named "William P Nobis"

Replicability and reproducibility are widely considered to be cornerstones of valid scientific research. Yet, the elements of replication in fundamental neuroscience studies do not fully overlap with the process of replication in clinical neuroscience involving patients. Here we discuss how better aligning the concept of replication across this translational spectrum might enhance the rate at which basic findings in the organization and function of the nervous system are leveraged to develop new treatments for psychiatric and neurological disorders.

View Article and Find Full Text PDF

Manganese (Mn) is an essential metal that serves as a cofactor for metalloenzymes important in moderating oxidative stress and the glutamate/glutamine cycle. Mn is typically obtained through the diet, but toxic overexposure can occur through other environmental or occupational exposure routes such as inhalation. Mn is known to accumulate in the brain following exposure and may contribute to the etiology of neurodegenerative disorders such as Alzheimer's disease (AD) even in the absence of acute neurotoxicity.

View Article and Find Full Text PDF

Purpose: To ascertain the rates of 30-day readmissions and emergency department presentations among pediatric patients with an index admission for functional seizures.

Method: A retrospective chart review of pediatric patients with an index discharge from the pediatric epilepsy monitoring unit (EMU) or general neurology service for functional seizures. Data collected included demographics, comorbidities, risk factors, and treatment during the index admission.

View Article and Find Full Text PDF

Sepsis and systemic inflammation are often accompanied by severe encephalopathy, sleep disruption and delirium that strongly correlate with poor clinical outcomes including long-term cognitive deficits. The cardinal manifestations of delirium are fluctuating altered mental status and inattention, identified in critically ill patients by interactive bedside assessment. The lack of analogous assessments in mouse models or clear biomarkers is a challenge to preclinical studies of delirium.

View Article and Find Full Text PDF

Understanding the role of dentate gyrus (DG) mossy cells (MCs) in learning and memory has rapidly evolved due to increasingly precise methods for targeting MCs and for in vivo recording and activity manipulation in rodents. These studies have shown MCs are highly active in vivo, strongly remap to contextual manipulation, and that their inhibition or hyperactivation impairs pattern separation and location or context discrimination. Less well understood is how MC activity is modulated by neurohormonal mechanisms, which might differentially control the participation of MCs in cognitive functions during discrete states, such as hunger or satiety.

View Article and Find Full Text PDF

Sudden unexpected death in epilepsy (SUDEP) is the leading cause of death in refractory epilepsy patients. Accumulating evidence from recent human studies and animal models suggests that seizure-related respiratory arrest may be important for initiating cardiorespiratory arrest and death. Prior evidence suggests that apnea onset can coincide with seizure spread to the amygdala and that stimulation of the amygdala can reliably induce apneas in epilepsy patients, potentially implicating amygdalar regions in seizure-related respiratory arrest and subsequent postictal hypoventilation and cardiorespiratory death.

View Article and Find Full Text PDF

Dravet syndrome (DS) is a developmental and epileptic encephalopathy with an increased incidence of sudden death. Evidence of interictal breathing deficits in DS suggests that alterations in subcortical projections to brainstem nuclei may exist, which might be driving comorbidities in DS. The aim of this study was to determine whether a subcortical structure, the bed nucleus of the stria terminalis (BNST) in the extended amygdala, is activated by seizures, exhibits changes in excitability, and expresses any alterations in neurons projecting to a brainstem nucleus associated with respiration, stress response, and homeostasis.

View Article and Find Full Text PDF

Sudden unexpected death in epilepsy (SUDEP) is the most common cause of death in patients with refractory epilepsy. The pathophysiology of SUDEP is unknown. Postictal phenomena such as postconvulsive immobility (PI), postictal generalized electroencephalography (EEG) suppression (PGES), arousal deficits, cardiac arrhythmias, central apneas, and obstructive apneas due to laryngospasms have been suggested to contribute to SUDEP.

View Article and Find Full Text PDF

Objective: Sudden unexpected death in epilepsy (SUDEP) is the leading cause of death for patients with refractory epilepsy, and there is increasing evidence for a centrally mediated respiratory depression as a pathophysiological mechanism. The brain regions responsible for a seizure's inducing respiratory depression are unclear-the respiratory nuclei in the brainstem are thought to be involved, but involvement of forebrain structures is not yet understood. The aim of this study was to analyze intracranial EEGs in combination with the results of respiratory monitoring to investigate the relationship between seizure spread to specific mesial temporal brain regions and the onset of respiratory dysfunction and apnea.

View Article and Find Full Text PDF

Objective: Evidence suggests that disordered breathing is critically involved in Sudden Unexpected Death in Epilepsy (SUDEP). To that end, evaluating structures that are activated by seizures and can activate brain regions that produce cardiorespiratory changes can further our understanding of the pathophysiology of SUDEP. Past preclinical studies have shown that electrical stimulation of the human amygdala induces apnea, suggesting a role for the amygdala in controlling respiration.

View Article and Find Full Text PDF

Hilar mossy cells (HMCs) in the hippocampus receive glutamatergic input from dentate granule cells (DGCs) via mossy fibers (MFs) and back-projections from CA3 pyramidal neuron collateral axons. Many fundamental features of these excitatory synapses have not been characterized in detail despite their potential relevance to hippocampal cognitive processing and epilepsy-induced adaptations in circuit excitability. In this study, we compared pre- and postsynaptic parameters between MF and CA3 inputs to HMCs in young and adult mice of either sex and determined the relative contributions of the respective excitatory inputs during and models of hippocampal hyperexcitability.

View Article and Find Full Text PDF

Background: Evidence suggests that the noradrenergic and corticotrophin-releasing factor (CRF) systems play critical roles in relapse and stress-related behaviors. In particular, behavioral studies point to a serial signaling process initiated by β-adrenergic receptors that requires CRF receptor (CRFR)-dependent signaling in the bed nucleus of the stria terminalis (BNST) to produce stress-induced relapse to cocaine seeking.

Methods: We used whole cell patch clamp recordings from acutely prepared mouse brain slices to examine the actions of β-adrenergic receptors and CRFR1 on excitatory transmission in BNST.

View Article and Find Full Text PDF

Long-term depression (LTD) is an important synaptic mechanism for limiting excitatory influence over circuits subserving cognitive and emotional behavior. A major means of LTD induction is through the recruitment of signaling via G(q)-linked receptors activated by norepinephrine (NE), acetylcholine, and glutamate. Receptors from these transmitter families have been proposed to converge on a common postsynaptic LTD maintenance mechanism, such that hetero- and homosynaptic induction produce similar alterations in glutamate synapse efficacy.

View Article and Find Full Text PDF

A common feature of drugs of abuse is their ability to increase extracellular dopamine levels in key brain circuits. The actions of dopamine within these circuits are thought to be important in reward and addiction-related behaviors. Current theories of addiction also posit a central role for corticotrophin-releasing factor (CRF) and an interaction between CRF and monoaminergic signaling.

View Article and Find Full Text PDF