Climate change will likely increase crop water demand, and farmers may adapt by applying more irrigation. Understanding the extent to which this is occurring is of particular importance in India, a global groundwater depletion hotspot, where increased withdrawals may further jeopardize groundwater resources. Using historical data on groundwater levels, climate, and crop water stress, we find that farmers have adapted to warming temperatures by intensifying groundwater withdrawals, substantially accelerating groundwater depletion rates in India.
View Article and Find Full Text PDFUnlabelled: Improved accuracy of evapotranspiration (ET) estimation, including its partitioning between transpiration (T) and surface evaporation (E), is key to monitor agricultural water use in vineyards, especially to enhance water use efficiency in semi-arid regions such as California, USA. Remote-sensing methods have shown great utility in retrieving ET from surface energy balance models based on thermal infrared data. Notably, the two-source energy balance (TSEB) has been widely and robustly applied in numerous landscapes, including vineyards.
View Article and Find Full Text PDFUnlabelled: Characterization of model errors is important when applying satellite-driven evapotranspiration (ET) models to water resource management problems. This study examines how uncertainty in meteorological forcing data and land surface modeling propagate through to errors in final ET data calculated using the Satellite Irrigation Management Support (SIMS) model, a computationally efficient ET model driven with satellite surface reflectance values. The model is applied to three instrumented winegrape vineyards over the 2017-2020 time period and the spatial and temporal variation in errors are analyzed.
View Article and Find Full Text PDFRobust information on consumptive water use (evapotranspiration, ET) derived from remote sensing can significantly benefit water decision-making in agriculture, informing irrigation schedules and water management plans over extended regions. To be of optimal utility for operational usage, these remote sensing ET data should be generated at the sub-field spatial resolution and daily-to-weekly timesteps commensurate with the scales of water management activities. However, current methods for field-scale ET retrieval based on thermal infrared (TIR) imaging, a valuable diagnostic of canopy stress and surface moisture status, are limited by the temporal revisit of available medium-resolution (100 m or finer) thermal satellite sensors.
View Article and Find Full Text PDF(small-Unmanned Aircraft System) and advanced surface energy balance models allow detailed assessment and monitoring (at plant scale) of different (agricultural, urban, and natural) environments. Significant progress has been made in the understanding and modeling of atmosphere-plant-soil interactions and numerical quantification of the internal processes at plant scale. Similarly, progress has been made in ground truth information comparison and validation models.
View Article and Find Full Text PDFLand surface temperature (LST) is a key diagnostic indicator of agricultural water use and crop stress. LST data retrieved from thermal infrared (TIR) band imagery, however, tend to have a coarser spatial resolution (e.g.
View Article and Find Full Text PDFIn recent years, the deployment of satellites and unmanned aerial vehicles (UAVs) has led to production of enormous amounts of data and to novel data processing and analysis techniques for monitoring crop conditions. One overlooked data source amid these efforts, however, is incorporation of 3D information derived from multi-spectral imagery and photogrammetry algorithms into crop monitoring algorithms. Few studies and algorithms have taken advantage of 3D UAV information in monitoring and assessment of plant conditions.
View Article and Find Full Text PDFEfficient water use assessment and irrigation management is critical for the sustainability of irrigated agriculture, especially under changing climate conditions. Due to the impracticality of maintaining ground instrumentation over wide geographic areas, remote sensing and numerical model-based fine-scale mapping of soil water conditions have been applied for water resource applications at a range of spatial scales. Here, we present a prototype framework for integrating high-resolution thermal infrared (TIR) and synthetic aperture radar (SAR) remote sensing data into a soil-vegetation-atmosphere-transfer (SVAT) model with the aim of providing improved estimates of surface- and root-zone soil moisture that can support optimized irrigation management strategies.
View Article and Find Full Text PDFVineyards in many semi-arid regions globally face limited water resources. Monitoring évapotranspiration (ET) of vineyards is critical for water resource management, but remains difficult due to the complex biophysics of the surfaces. Both measurement and modeling approaches for estimating turbulent water vapor transport rely on implicit assumptions that exchanges occur in a reasonably regular fashion over the time scales generally used for averaging.
View Article and Find Full Text PDFThe thermal-based Two-Source Energy Balance (TSEB) model partitions the evapotranspiration (ET) and energy fluxes from vegetation and soil components providing the capability for estimating soil evaporation (E) and canopy transpiration (T). However, it is crucial for ET partitioning to retrieve reliable estimates of canopy and soil temperatures and net radiation, as the latter determines the available energy for water and heat exchange from soil and canopy sources. These two factors become especially relevant in row crops with wide spacing and strongly clumped vegetation such as vineyards and orchards.
View Article and Find Full Text PDFA newly developed microwave (MW) land surface temperature (LST) product is used to substitute thermal infrared (TIR) based LST in the Atmosphere Land Exchange Inverse (ALEXI) modelling framework for estimating ET from space. ALEXI implements a two-source energy balance (TSEB) land surface scheme in a time-differential approach, designed to minimize sensitivity to absolute biases in input records of LST through the analysis of the rate of temperature change in the morning. Thermal infrared (TIR) retrievals of the diurnal LST curve, traditionally from geostationary platforms, are hindered by cloud cover, reducing model coverage on any given day.
View Article and Find Full Text PDFSignificant efforts have been made recently in the application of high-resolution remote sensing imagery (i.e., sub-meter) captured by unmanned aerial vehicles (UAVs) for precision agricultural applications for high-value crops such as wine grapes.
View Article and Find Full Text PDFAn 8-yr study was conducted to better understand factors influencing year-to-year variability in field-scale herbicide volatilization and surface runoff losses. The 21-ha research site is located at the USDA-ARS Beltsville Agricultural Research Center in Beltsville, MD. Site location, herbicide formulations, and agricultural management practices remained unchanged throughout the duration of the study.
View Article and Find Full Text PDFA 3-yr study was conducted to focus on the impact of surface soil water content on metolachlor (2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl) acetamide) volatilization from a field with different surface soil water regimes created by subsurface water flow paths. Metolachlor vapor fluxes were measured at two locations within the field where local meteorological and soil conditions were relatively constant, except for surface soil water content, which differed significantly. Surface soil water content at the two sites differed in response to the presence of subsurface flow pathways.
View Article and Find Full Text PDFPesticide volatilization is a significant loss pathway that may have unintended consequences in nontarget environments. Field-scale pesticide volatilization involves the interaction of a number of complex variables. There is a need to acquire pesticide volatilization fluxes from a location where several of these variables can be held constant.
View Article and Find Full Text PDF