Publications by authors named "William P Carbery"

The negatively charged nitrogen vacancy (NV) center in diamond is an optically accessible material defect with a unique combination of spin and optical properties that has attracted interest in quantum-information sciences and as a design candidate for nanoscale quantum sensors. Here, we present time-resolved nonlinear optical spectroscopy measurements, conducted with ultrabroadband laser pulses, that reveal strong modulation of the excited-state by the longitudinal optical (LO) phonon of the diamond lattice. The LO phonon and its overtones geometrically distort neighboring NV centers, driving long lived (3.

View Article and Find Full Text PDF

A noncollinear optical parametric amplifier (NOPA) can produce few-cycle femtosecond laser pulses that are ideally suited for time-resolved optical spectroscopy measurements. However, the nonlinear-optical process giving rise to ultrabroadband pulses is susceptible to spatiotemporal dispersion problems. Here, we detail refinements, including chirped-pulse amplification (CPA) and pulse-front matching (PFM), that minimize spatiotemporal dispersion and thereby improve the properties of ultrabroadband pulses produced by a NOPA.

View Article and Find Full Text PDF

Inverse electron demand Diels-Alder reactions between s-tetrazines and strained dienophiles have numerous applications in fluorescent labeling of biomolecules. Herein, we investigate the effect of the dienophile on the fluorescence enhancement obtained upon reaction with a tetrazine-quenched fluorophore and study the possible mechanisms of fluorescence quenching by both the tetrazine and its reaction products. The dihydropyridazine obtained from reaction with a strained cyclooctene shows a residual fluorescence quenching effect, greater than that exerted by the pyridazine arising from reaction with the analogous alkyne.

View Article and Find Full Text PDF

Delocalized Frenkel excitons-coherently shared excitations among chromophores-are responsible for the remarkable efficiency of supramolecular light-harvesting assemblies within photosynthetic organisms. The translation of nature's design principles to applications in optoelectronic devices has been limited by the fragility of the supramolecular structures used and the delicate nature of Frenkel excitons, particularly under mildly changing solvent conditions and elevated temperatures and upon deposition onto solid substrates. Here, we overcome those functionalization barriers through composition of stable supramolecular light-harvesting nanotubes enabled by tunable (~4.

View Article and Find Full Text PDF

The design and optimization of fluorescent labels and fluorogenic probes rely heavily on their ability to distinguish among multiple competing fluorescence quenching mechanisms. Cresyl violet, a member of the 1,4-oxazine family of dyes, has generally been regarded as an exemplary fluorescent probe; however, recent ultrafast experiments revealed an excited-state decay kinetic of 1.2 ps, suggesting the presence of a transient photochemical state.

View Article and Find Full Text PDF

Transient absorption measurements conducted using broadband, 6 fs laser pulses reveal unexpected femtosecond dynamics in the [IrBr] model system. Vibrational spectra and the X-ray crystal structure indicate that these dynamics are not induced by a Jahn-Teller distortion, a type of conical intersection typically associated with the spectral features of transition metal compounds. Two-dimensional electronic spectra of [IrBr] contain 23 cross peaks, which necessarily arise from spin-orbit coupling.

View Article and Find Full Text PDF

The coupling between electronic and nuclear variables is a key consideration in molecular dynamics and spectroscopy. However, simulations that include detailed vibronic coupling terms are challenging to perform, and thus a variety of approximations can be used to model and interpret experimental results. Recent work shows that these simplified models can be inadequate.

View Article and Find Full Text PDF

Conical intersections are molecular configurations at which adiabatic potential-energy surfaces touch. They are predicted to be ubiquitous, yet condensed-phase experiments have focused on the few systems with clear spectroscopic signatures of negligible fluorescence, high photoactivity, or femtosecond electronic kinetics. Although rare, these signatures have become diagnostic for conical intersections.

View Article and Find Full Text PDF

Coherent multidimensional optical spectroscopy is an emerging technique for resolving structure and ultrafast dynamics of molecules, proteins, semiconductors, and other materials. A current challenge is the quality of kinetics that are examined as a function of waiting time. Inspired by noise-suppression methods of transient absorption, here we incorporate shot-by-shot acquisitions and balanced detection into coherent multidimensional optical spectroscopy.

View Article and Find Full Text PDF