Publications by authors named "William Osterholz"

Agricultural phosphorus (P) losses are harmful to water quality, but knowledge gaps about the importance of fertilizer management practices on new (recently applied) sources of P may limit P loss mitigation efforts. Weighted regression models applied to subsurface tile drainage water quality data enabled estimating the new P losses associated with 155 P applications in Ohio and Indiana, USA. Daily discharge and dissolved reactive P (DRP) and total P (TP) loads were used to detect increases in P loss following each application which was considered new P.

View Article and Find Full Text PDF

Agricultural losses of dissolved reactive phosphorus (DRP) emanate from both historic P applications (i.e., "old P") and recently applied fertilizer (i.

View Article and Find Full Text PDF

Scientific concepts and measurements that relate soil and water resources are lacking in several areas, limiting our development of a framework or nexus to assess soil-watershed health. Current research designs rely on land management practices as a proxy for soil condition. Yet, conservation practices are often studied in isolation of each other, and adoption may be driven by state and federal farm programs that can incentivize a given management practice without accounting for current, novel farmer-driven adoption of conservation systems.

View Article and Find Full Text PDF

Watershed-scale hydrologic models are commonly used to assess the water quality effects of agricultural conservation practices that improve soil health (e.g., cover crops and no-till).

View Article and Find Full Text PDF

Soil health and water quality improvement are major goals of sustainable agricultural management systems, yet the connections between soil health and water quality impacts remain unclear. In this study we conducted an initial exploratory assessment of the relationships between soil chemical, physical, and biological properties and edge-of-field water quality across a network of 40 fields in Ohio, USA. Discharge, dissolved reactive P (DRP), total P (TP), and nitrate (NO ) losses associated with precipitation events via surface runoff and tile drainage were monitored.

View Article and Find Full Text PDF

Legacy phosphorus (P) in agricultural soils can be transported to surface waters via runoff and tile drainage, where it contributes to the development of harmful and nuisance algal blooms and hypoxia. However, a limited understanding of legacy P loss dynamics impedes the identification of mitigation strategies. Edge-of-field data from 41 agricultural fields in northwestern Ohio, USA, were used to develop regressions between legacy P concentrations (C) and discharge (Q) for two P fractions: total P (TP) and dissolved reactive P (DRP).

View Article and Find Full Text PDF

Process-based models are increasingly used to study agroecosystem interactions and N O emissions from agricultural fields. The widespread use of these models to conduct research and inform policy benefits from periodic model comparisons that assess the state of agroecosystem modeling and indicate areas for model improvement. This work provides an evaluation of simulated N O flux from three process-based models: DayCent, DNDC, and EPIC.

View Article and Find Full Text PDF

Soil texture is known to have an influence on the physical and biological processes that produce NO emissions in agricultural fields, yet comparisons across soil textural types are limited by considerations of time and practicality. We used the DayCent biogeochemical model to assess the effects of soil texture on NO emissions from agriculturally productive soils from four counties in Wisconsin. We validated the DayCent model using field data from 2 yr of a long-term (approximately 20-yr) cropping systems trial and then simulated yield and NO emissions from continuous corn ( L.

View Article and Find Full Text PDF

Agriculture in the midwestern United States is a major anthropogenic source of nitrous oxide (NO) and is both a source and sink for methane (CH), but the degree to which cropping systems differ in emissions of these gases is not well understood. Our objectives were to determine if fluxes of NO and CH varied among cropping systems and among crop phases within a cropping system. We compare NO and CH fluxes over the 2010 and 2011 growing seasons from the six cropping systems at the Wisconsin Integrated Cropping Systems Trial (WICST), a 20-yr-old cropping systems experiment.

View Article and Find Full Text PDF