Publications by authors named "William O Thayer"

Human immunodeficiency virus (HIV) persists indefinitely in individuals with HIV who receive antiretroviral therapy (ART) owing to a reservoir of latently infected cells that contain replication-competent virus. Here, to better understand the mechanisms responsible for latency persistence and reversal, we used the interleukin-15 superagonist N-803 in conjunction with the depletion of CD8 lymphocytes in ART-treated macaques infected with simian immunodeficiency virus (SIV). Although N-803 alone did not reactivate virus production, its administration after the depletion of CD8 lymphocytes in conjunction with ART treatment induced robust and persistent reactivation of the virus in vivo.

View Article and Find Full Text PDF

Autologous induced pluripotent stem cells (iPSCs) constitute an unlimited cell source for patient-specific cell-based organ repair strategies. However, their generation and subsequent differentiation into specific cells or tissues entail cell line-specific manufacturing challenges and form a lengthy process that precludes acute treatment modalities. These shortcomings could be overcome by using prefabricated allogeneic cell or tissue products, but the vigorous immune response against histo-incompatible cells has prevented the successful implementation of this approach.

View Article and Find Full Text PDF

The human brain is an important site of HIV replication and persistence during antiretroviral therapy (ART). Direct evaluation of HIV infection in the brains of otherwise healthy individuals is not feasible; therefore, we performed a large-scale study of bone marrow/liver/thymus (BLT) humanized mice as an in vivo model to study HIV infection in the brain. Human immune cells, including CD4+ T cells and macrophages, were present throughout the BLT mouse brain.

View Article and Find Full Text PDF

Despite years of fully suppressive antiretroviral therapy (ART), HIV persists in its hosts and is never eradicated. One major barrier to eradication is that the virus infects multiple cell types that may individually contribute to HIV persistence. Tissue macrophages are critical contributors to HIV pathogenesis; however, their specific role in HIV persistence during long-term suppressive ART has not been established.

View Article and Find Full Text PDF

Background: The latent reservoir in resting CD4(+) T cells presents a major barrier to HIV cure. Latency-reversing agents are therefore being developed with the ultimate goal of disrupting the latent state, resulting in induction of HIV expression and clearance of infected cells. Histone deacetylase inhibitors (HDACi) have received a significant amount of attention for their potential as latency-reversing agents.

View Article and Find Full Text PDF

Novel therapeutic strategies are needed for the treatment of hematologic malignancies; and bispecific antibody-derived molecules, such as dual-affinity re-targeting (DART) proteins, are being developed to redirect T cells to kill target cells expressing tumor or viral antigens. Here we present our findings of specific and systemic human B-cell depletion by a CD19xCD3 DART protein in humanized BLT mice. Administration of the CD19xCD3 DART protein resulted in a dramatic sustained depletion of human CD19(+) B cells from the peripheral blood, as well as a dramatic systemic reduction of human CD19(+) B-cell levels in all tissues (bone marrow, spleen, liver, lung) analyzed.

View Article and Find Full Text PDF

Vaginal HIV transmission accounts for the majority of new infections worldwide. Currently, multiple efforts to prevent HIV transmission are based on pre-exposure prophylaxis with various antiretroviral drugs. Here, we describe two novel nanoformulations of the reverse transcriptase inhibitor rilpivirine for pericoital and coitus-independent HIV prevention.

View Article and Find Full Text PDF