Publications by authors named "William O Kline"

Clenbuterol and other beta2-adrenergic agonists are effective at inducing muscle growth and attenuating muscle atrophy through unknown mechanisms. This study tested the hypothesis that clenbuterol-induced growth and muscle sparing is mediated through the activation of Akt and mammalian target of rapamycin (mTOR) signaling pathways. Clenbuterol was administered to normal weight-bearing adult rats to examine the growth-inducing effects and to adult rats undergoing muscle atrophy as the result of hindlimb suspension or denervation to examine the muscle-sparing effects.

View Article and Find Full Text PDF

Genetic ablation of Inppl1, which encodes SHIP2 (SH2-domain containing inositol 5-phosphatase 2), was previously reported to induce severe insulin sensitivity, leading to early postnatal death. In the previous study, the targeting construct left the first eighteen exons encoding Inppl1 intact, generating a Inppl1(EX19-28-/-) mouse, and apparently also deleted a second gene, Phox2a. We report a new SHIP2 knockout (Inppl1(-/-)) targeted to the translation-initiating ATG, which is null for Inppl1 mRNA and protein.

View Article and Find Full Text PDF

Skeletal muscle atrophy is a severe morbidity caused by a variety of conditions, including cachexia, cancer, AIDS, prolonged bedrest, and diabetes. One strategy in the treatment of atrophy is to induce the pathways normally leading to skeletal muscle hypertrophy. The pathways that are sufficient to induce hypertrophy in skeletal muscle have been the subject of some controversy.

View Article and Find Full Text PDF

Skeletal muscle size depends upon a dynamic balance between anabolic (or hypertrophic) and catabolic (or atrophic) processes. Previously, no link between the molecular mediators of atrophy and hypertrophy had been reported. We demonstrate a hierarchy between the signals which mediate hypertrophy and those which mediate atrophy: the IGF-1/PI3K/Akt pathway, which has been shown to induce hypertrophy, prevents induction of requisite atrophy mediators, namely the muscle-specific ubiquitin ligases MAFbx and MuRF1.

View Article and Find Full Text PDF