Facultative parthenogenesis (FP) has historically been regarded as rare in vertebrates, but in recent years incidences have been reported in a growing list of fish, reptile, and bird species. Despite the increasing interest in the phenomenon, the underlying mechanism and evolutionary implications have remained unclear. A common finding across many incidences of FP is either a high degree of homozygosity at microsatellite loci or low levels of heterozygosity detected in next-generation sequencing data.
View Article and Find Full Text PDFResearch into human development involves the use of human embryos and their derivative cells and tissues. How religions view the human embryo depends on beliefs about ensoulment and the inception of personhood, and science can neither prove nor refute the teaching of those religions that consider the zygote to be a human person with an immortal soul. This Spotlight article discusses some of the dominant themes that have emerged with regard to how different religions view the human embryo, with a focus on the Christian faith as well as Buddhist, Hindu, Jewish and Islamic perspectives.
View Article and Find Full Text PDFParthenogenetic species of whiptail lizards in the genus Aspidoscelis constitute a striking example of speciation by hybridization, in which first-generation hybrids instantly attain reproductive isolation and procreate as clonal all-female lineages. Production of eggs containing a full complement of chromosomes in the absence of fertilization involves genome duplication prior to the meiotic divisions. In these pseudo-tetraploid oocytes, pairing and recombination occur exclusively between identical chromosomes instead of homologs; a deviation from the normal meiotic program that maintains heterozygosity.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
June 2011
Speciation in animals commonly involves an extrinsic barrier to genetic exchange followed by the accumulation of sufficient genetic variation to impede subsequent productive interbreeding. All-female species of whiptail lizards, which originated by interspecific hybridization between sexual progenitors, are an exception to this rule. Here, the arising species instantaneously acquires a novel genotype combining distinctive alleles from two different species, and reproduction by parthenogenesis constitutes an effective intrinsic barrier to genetic exchange.
View Article and Find Full Text PDFThe past decade has seen a remarkable revision of perspectives on unisexual reproduction in vertebrates. One can no longer view it as a rare curiosity far outside the mainstream of evolution. More than 80 taxa of fish, amphibians, and reptiles are now known to reproduce by parthenogenesis (Greek for 'virgin birth') or its variants, and they persist in nature as all-female lineages.
View Article and Find Full Text PDFAlthough bisexual reproduction has proven to be highly successful, parthenogenetic all-female populations occur frequently in certain taxa, including the whiptail lizards of the genus Aspidoscelis. Allozyme analysis revealed a high degree of fixed heterozygosity in these parthenogenetic species, supporting the view that they originated from hybridization events between related sexual species. It has remained unclear how the meiotic program is altered to produce diploid eggs while maintaining heterozygosity.
View Article and Find Full Text PDFKennedy Inst Ethics J
March 2009
Scientific breakthroughs rarely yield the potential to engage a foundational ethical question. Recent studies on direct reprogramming of human skin cells reported by the Yamanaka lab in Japan and the Thomson lab in Wisconsin suggest that scientists may have crossed both a scientific and an ethical threshold. The fascinating science of direct nuclear reprogramming highlights empirical data that may clarify the ontological status of cellular activity in the early stages of what could become a human fetus and justify ethical options for research in this controversial field.
View Article and Find Full Text PDFScientists have tried for decades to understand cancer development in the context of therapeutic strategies. The realization that cancers may rely on "cancer stem cells" that share the self-renewal feature of normal stem cells has changed the perspective with regard to new approaches for treating the disease. In this review, we propose that one of the differences between normal stem cells and cancer stem cells is their degree of dependence on the stem cell niche, a specialized microenvironment in which stem cells reside.
View Article and Find Full Text PDF