Publications by authors named "William Mccoull"

Article Synopsis
  • The study focuses on optimizing inhibitors for epidermal growth factor receptor (EGFR) Exon20 insertions (Ex20Ins) using structure-based drug design (SBDD).
  • A new compound was discovered that is both effective against EGFR Ex20Ins and able to cross the blood-brain barrier in preclinical tests.
  • The design process involved creating a novel bicyclic structure, making strategic modifications to improve stability and enhance brain exposure by refining key molecular properties.
View Article and Find Full Text PDF

Herein, we report the identification and optimization of a series of potent inhibitors of EGFR Exon20 insertions with significant selectivity over wild-type EGFR. A strategically designed HTS campaign, multiple iterations of structure-based drug design (SBDD), and tactical linker replacement led to a potent and wild-type selective series of molecules and ultimately the discovery of . Compound is a potent and selective inhibitor of EGFR Exon20 insertions and has demonstrated encouraging efficacy in NSCLC EGFR CRISPR-engineered H2073 xenografts that carry an SVD Exon20 insertion and reduced efficacy in a H2073 wild-type EGFR xenograft model compared to CLN-081 (), indicating that may have lower EGFR wild-type associated toxicity.

View Article and Find Full Text PDF

For most oral small-molecule projects within drug discovery, the extent and duration of the effect are influenced by the total clearance of the compound; hence, designing compounds with low clearance remains a key focus to help enable sufficient protein target engagement. Comprehensive understanding and accurate prediction of animal clearance and pharmacokinetics provides confidence that the same can be observed for human. During a MERTK inhibitor lead optimization project, a series containing a biphenyl ring system with benzylamine -substitution on one phenyl and nitrogen inclusion as the atom on the other ring demonstrated multiple routes of compound elimination in rats.

View Article and Find Full Text PDF

The receptor tyrosine kinase, MERTK, plays an essential role in homeostasis of the retina via efferocytosis of shed outer nuclear segments of photoreceptors. The Royal College of Surgeons rat model of retinal degeneration has been linked to loss-of-function of MERTK, and together with the MERTK knock-out mouse, phenocopy retinitis pigmentosa in humans with MERTK mutations. Given recent efforts and interest in MERTK as a potential immuno-oncology target, development of a strategy to assess ocular safety at an early pre-clinical stage is critical.

View Article and Find Full Text PDF

Inhibition of Mer and Axl kinases has been implicated as a potential way to improve the efficacy of current immuno-oncology therapeutics by restoring the innate immune response in the tumor microenvironment. Highly selective dual Mer/Axl kinase inhibitors are required to validate this hypothesis. Starting from hits from a DNA-encoded library screen, we optimized an imidazo[1,2-]pyridine series using structure-based compound design to improve potency and reduce lipophilicity, resulting in a highly selective probe compound .

View Article and Find Full Text PDF

An efficient macrocyclisation approach based on the double aromatic nucleophilic substitution (SNACK) was developed. This methodology allows a facile incorporation of heterocyclic motifs into macrocyclic rings and rapid synthesis of a significant number of structurally diverse macrocycles. SNACK macrocyclisation enables preparation of stable diastereoisomers of conformationally restricted macrocycles (atropisomers).

View Article and Find Full Text PDF

Mer is a member of the TAM (Tyro3, Axl, Mer) kinase family that has been associated with cancer progression, metastasis, and drug resistance. Their essential function in immune homeostasis has prompted an interest in their role as modulators of antitumor immune response in the tumor microenvironment. Here we illustrate the outcomes of an extensive lead-generation campaign for identification of Mer inhibitors, focusing on the results from concurrent, orthogonal high-throughput screening approaches.

View Article and Find Full Text PDF

Dual Bcl-2/Bcl-x inhibitors are expected to deliver therapeutic benefit in many haematological and solid malignancies, however, their use is limited by tolerability issues. AZD4320, a potent dual Bcl-2/Bcl-x inhibitor, has shown good efficacy however had dose limiting cardiovascular toxicity in preclinical species, coupled with challenging physicochemical properties, which prevented its clinical development. Here, we describe the design and development of AZD0466, a drug-dendrimer conjugate, where AZD4320 is chemically conjugated to a PEGylated poly-lysine dendrimer.

View Article and Find Full Text PDF

The activation loop (A-loop) plays a key role in regulating the catalytic activity of protein kinases. Phosphorylation in this region enhances the phosphoryl transfer rate of the kinase domain and increases its affinity for ATP. Furthermore, the A-loop possesses autoinhibitory functions in some kinases, where it collapses onto the protein surface and blocks substrate binding when unphosphorylated.

View Article and Find Full Text PDF
Article Synopsis
  • Targeting Bcl-2 family proteins is vital for cancer treatment, prompting the development of AZD4320, a dual inhibitor that effectively addresses resistance mechanisms, particularly from Bcl-x.
  • Through structure-based chemistry, AZD4320 was designed to bind strongly to Bcl-2 and Bcl-x, leading to enhanced apoptosis in cancer cells, especially in acute myeloid leukemia (AML).
  • Initial results show that AZD4320 can shrink tumors while temporarily lowering platelet counts, which recovers quickly, indicating its promise as a weekly treatment option across various cancers linked to Bcl-2 dysregulation.
View Article and Find Full Text PDF

The three-dimensional conformations adopted by a free ligand in solution impact bioactivity and physicochemical properties. Solution 1D NMR spectra inherently contain information on ligand conformational flexibility and three-dimensional shape, as well as the propensity of the free ligand to fully preorganize into the bioactive conformation. Herein we discuss some key learnings, distilled from our experience developing potent and selective synthetic macrocyclic inhibitors, including Mcl-1 clinical candidate AZD5991.

View Article and Find Full Text PDF

B-cell lymphoma 6 (BCL6) inhibition is a promising mechanism for treating hematological cancers but high quality chemical probes are necessary to evaluate its therapeutic potential. Here we report potent BCL6 inhibitors that demonstrate cellular target engagement and exhibit exquisite selectivity for BCL6 based on mass spectrometry analyses following chemical proteomic pull down. Importantly, a proteolysis-targeting chimera (PROTAC) was also developed and shown to significantly degrade BCL6 in a number of diffuse large B-cell lymphoma (DLBCL) cell lines, but neither BCL6 inhibition nor degradation selectively induced marked phenotypic response.

View Article and Find Full Text PDF

The mechanism behind the glucose lowering effect occurring after specific activation of GPR120 is not completely understood. In this study, a potent and selective GPR120 agonist was developed and its pharmacological properties were compared with the previously described GPR120 agonist Metabolex-36. Effects of both compounds on signaling pathways and GLP-1 secretion were investigated in vitro.

View Article and Find Full Text PDF

Inhibition of the protein-protein interaction between B-cell lymphoma 6 (BCL6) and corepressors has been implicated as a therapeutic target in diffuse large B-cell lymphoma (DLBCL) cancers and profiling of potent and selective BCL6 inhibitors are critical to test this hypothesis. We identified a pyrazolo[1,5-a]pyrimidine series of BCL6 binders from a fragment screen in parallel with a virtual screen. Using structure-based drug design, binding affinity was increased 100000-fold.

View Article and Find Full Text PDF

GPR120 agonists have therapeutic potential for the treatment of diabetes, but few selective agonists have been reported. We identified an indazole-6-phenylcyclopropylcarboxylic acid series of GPR120 agonists and conducted SAR studies to optimize GPR120 potency. Furthermore, we identified a (S,S)-cyclopropylcarboxylic acid structural motif which gave selectivity against GPR40.

View Article and Find Full Text PDF

Group I p21-activated kinase (PAK) inhibitors are indicated as important in cancer progression, but achieving high kinase selectivity has been challenging. A bis-anilino pyrimidine PAK1 inhibitor was identified and optimized through structure-based drug design to improve PAK1 potency and achieve high kinase selectivity, giving probe compound (). Reduction of lipophilicity to lower clearance afforded () as an probe compound with oral exposure in mouse.

View Article and Find Full Text PDF

A new synthetic route to 3-(heteroaryl) tetrahydropyrazolo[3,4-c]pyridines has been developed that uses the Suzuki-Miyaura cross-coupling of a triflate 6 with (hetero)aryl boronic acids or esters. Using Pd(OAc)2 and XPhos or an XPhos precatalyst, a diverse range of substituents at the C3 position of the tetrahydropyrazolo[3,4-c]pyridine skeleton were prepared. The use of pivaloyloxymethyl and benzyl protection also offers the potential to differentially functionalize the pyrazole and tetrahydropyridine nitrogens.

View Article and Find Full Text PDF

Ghrelin plays a major physiological role in the control of food intake, and inverse agonists of the ghrelin receptor (GHS-R1a) are widely considered to offer utility as antiobesity agents by lowering the set-point for hunger between meals. We identified an acylurea series of ghrelin modulators from high throughput screening and optimized binding affinity through structure-activity relationship studies. Furthermore, we identified specific substructural changes, which switched partial agonist activity to inverse agonist activity, and optimized physicochemical and DMPK properties to afford the non-CNS penetrant inverse agonist 22 (AZ-GHS-22) and the CNS penetrant inverse agonist 38 (AZ-GHS-38).

View Article and Find Full Text PDF

A computational method for predicting the likelihood of aromatic amines being active in the Ames test for mutagenicity was trialed on a set of aminopyrazoles. A virtual array of compounds was generated from the available sets of hydrazines and α-cyanoaldehydes (or ketones) and quantum mechanical calculations used to compute a probability of being active in the Ames test. The compounds selected for synthesis and testing were not based on the predictions and so spanned the range of predicted probabilities.

View Article and Find Full Text PDF

Inhibition of 11β-HSD1 is an attractive mechanism for the treatment of obesity and other elements of the metabolic syndrome. We report here the discovery of a nicotinic amide derived carboxylic acid class of inhibitors that has good potency, selectivity, and pharmacokinetic characteristics. Compound 11i (AZD4017) is an effective inhibitor of 11β-HSD1 in human adipocytes and exhibits good druglike properties and as a consequence was selected for clinical development.

View Article and Find Full Text PDF

A novel series of DGAT-1 inhibitors was discovered from an oxadiazole amide high throughput screening (HTS) hit. Optimisation of potency and ligand lipophilicity efficiency (LLE) resulted in a carboxylic acid containing clinical candidate 53 (AZD3988), which demonstrated excellent DGAT-1 potency (0.6 nM), good pharmacokinetics and pre-clinical in vivo efficacy that could be rationalised through a PK/PD relationship.

View Article and Find Full Text PDF

The SAR and improvement in potency against Tie2 of novel thienopyrimidine and thiazolopyrimidine kinase inhibitors are reported. The crystal structure of one of these compounds bound to the Tie-2 kinase domain is consistent with the SAR. These compounds have moderate potency in cellular assays of Tie-2 inhibition, good physical properties, DMPK, and show evidence of in vivo inhibition of Tie-2.

View Article and Find Full Text PDF

3-(3-Cyclopentyloxy-4-methoxy-benzyl)-8-isopropyl-adenine V11294 (1) has been identified as a lead structure, which selectively inhibits human lung PDE4 (436 nM) and is also active in a number of in vitro and in vivo models of inflammation. Here we describe the synthesis and pharmacology of a series of highly potent 8-[(benzyloxy)methyl]-substituted analogues, with potencies in the range 10-300 nM. In addition, several compounds showed interesting PDE4 subtype specificities, for example, the 3-thienyl derivative 5v, which showed 6-10 nM potency at PDE4B, D3, and D5 and a 20- to 200-fold selectivity over A and D2, respectively.

View Article and Find Full Text PDF