Characterizing how a tissue's constituents give rise to its viscoelasticity is important for uncovering how hidden timescales underlie multiscale biomechanics. These constituents are viscoelastic in nature, and their mechanics must typically be assessed from the uniaxial behavior of a tissue. Confounding the challenge is that tissue viscoelasticity is typically associated with nonlinear elastic responses.
View Article and Find Full Text PDFUnlabelled: The ways that fibroblasts remodel their environment are central to wound healing, development of musculoskeletal tissues, and progression of pathologies such as fibrosis. However, the changes that fibroblasts make to the material around them and the mechanical consequences of these changes have proven difficult to quantify, especially in realistic, viscoelastic three-dimensional culture environments, leaving a critical need for quantitative data. Here, we observed the mechanisms and quantified the mechanical effects of fibroblast remodeling in engineered tissue constructs (ETCs) comprised of reconstituted rat tail (type I) collagen and human fibroblast cells.
View Article and Find Full Text PDFCharacterizing how cells in three-dimensional (3D) environments or natural tissues respond to biophysical stimuli is a longstanding challenge in biology and tissue engineering. We demonstrate a strategy to monitor morphological and mechanical responses of contractile fibroblasts in a 3D environment. Cells responded to stretch through specific, cell-wide mechanisms involving staged retraction and reinforcement.
View Article and Find Full Text PDFThe theory of photon count histogram (PCH) analysis describes the distribution of fluorescence fluctuation amplitudes due to populations of fluorophores diffusing through a focused laser beam and provides a rigorous framework through which the brightnesses and concentrations of the fluorophores can be determined. In practice, however, the brightnesses and concentrations of only a few components can be identified. Brightnesses and concentrations are determined by a nonlinear least-squares fit of a theoretical model to the experimental PCH derived from a record of fluorescence intensity fluctuations.
View Article and Find Full Text PDFMaintaining cell shape and tone is crucial for the function and survival of cells and tissues. Mechanotransduction relies on the transformation of minuscule mechanical forces into high-fidelity electrical responses. When mechanoreceptors are stimulated, mechanically sensitive cation channels open and produce an inward transduction current that depolarizes the cell.
View Article and Find Full Text PDFSelf-incompatibility (SI) in Papaver rhoeas triggers a ligand-mediated signal transduction cascade, resulting in the inhibition of incompatible pollen tube growth. Using a cytomechanical approach we have demonstrated that dramatic changes to the mechanical properties of incompatible pollen tubes are stimulated by SI induction. Microindentation revealed that SI resulted in a reduction of cellular stiffness and an increase in cytoplasmic viscosity.
View Article and Find Full Text PDF