Publications by authors named "William Mark Erwin"

Pain and disability secondary to degenerative disc disease continue to burden the healthcare system, creating an urgent need for effective, disease-modifying therapies. Contemporary research has identified potential therapies that include protein-, cellular- and/or matrix-related approaches; however, none have yet achieved a meaningful clinical impact. The tissue-specific realities of the intervertebral disc create considerable therapeutic challenges due to the disc's location, compartmentalization, hypovascularization and delicate physiological environment.

View Article and Find Full Text PDF

Tissue sources of pain emanating from degenerative discs remains incompletely understood. Canine intervertebral discs (IVDs) were needle puncture injured, 4-weeks later injected with either phosphate-buffered saline (PBS) or NTG-101, harvested after an additional fourteen weeks and then histologically evaluated for the expression of NGFr, BDNF, TrkB and CALCRL proteins. Quantification was performed using the HALO automated cell-counting scoring platform.

View Article and Find Full Text PDF

Numerous publications over the past 22 years, beginning with a seminal paper by Aguiar et al., have demonstrated the ability of notochordal cell-secreted factors to confer anabolic effects upon intervertebral disc (IVD) cells. Since this seminal paper, other scientific publications have demonstrated that notochordal cells secrete soluble factors that can induce anti-inflammatory, pro-anabolic and anti-cell death effects upon IVD nucleus pulposus (NP) cells in vitro and in vivo, direct human bone marrow-derived mesenchymal stem cells toward an IVD NP-like phenotype and repel neurite ingrowth.

View Article and Find Full Text PDF

Background Context: Degenerative disc disease (DDD) remains without an effective therapy and presents a costly burden to society.

Purpose: Based upon prior reports concerning the effects of notochordal cell-conditioned medium (NCCM) on disc cells, we performed a proof of principle study to determine whether NCCM could reduce cytotoxic stress-induced apoptosis in human disc nucleus pulposus (NP) cells.

Study Design/setting: This is an "in vitro" fundamental or basic science study.

View Article and Find Full Text PDF

Introduction: In the present study, we sought to quantify and contrast the secretome and biomechanical properties of the non-chondrodystrophic (NCD) and chondrodystrophic (CD) canine intervertebral disc (IVD) nucleus pulposus (NP).

Methods: We used iTRAQ proteomic methods to quantify the secretome of both CD and NCD NP. Differential levels of proteins detected were further verified using immunohistochemistry, Western blotting, and proteoglycan extraction in order to evaluate the integrity of the small leucine-rich proteoglycans (SLRPs) decorin and biglycan.

View Article and Find Full Text PDF

The intervertebral disk (IVD) is a fascinating and resilient tissue compartment given the myriad of functions that it performs as well as its unique anatomy. The IVD must tolerate immense loads, protect the spinal cord, and contribute considerable flexibility and strength to the spinal column. In addition, as a consequence of its anatomical and physiological configuration, a unique characteristic of the IVD is that it also provides a barrier to metastatic disease.

View Article and Find Full Text PDF
Article Synopsis
  • Effective therapies for degenerative disc disease (DDD) are scarce, but using conditioned media from canine intervertebral discs may offer a promising solution to protect nucleus pulposus (NP) cells from apoptosis.
  • Researchers developed conditioned media from both nonchondrodystrophic (NCD) and chondrodystrophic (CD) canines and tested their effects on murine and human NP cells under hypoxic conditions.
  • Results showed that NCD-conditioned medium (NCCM) was more effective than CD-conditioned medium (CDCM) in preventing apoptosis in both murine and human NP cells, highlighting its potential in treating DDD.
View Article and Find Full Text PDF