A cell wall is required to control cell shape and size to maintain growth and division. However, some bacterial species maintain their morphology and size without a cell wall, calling into question the importance of the cell wall to maintain shape and size. It has been very difficult to examine the dispensability of cell wall synthesis in rod-shaped bacteria such as Escherichia coli for maintenance of their shape and size because they lyse without cell walls under normal culture conditions.
View Article and Find Full Text PDFAn increasing number of proteins involved in bacterial cell cycle events have been recently shown to undergo phase separation. The resulting biomolecular condensates play an important role in cell cycle protein function and may be involved in development of persister cells tolerant to antibiotics. Here we report that the chromosomal Ter macrodomain organizer MatP, a division site selection protein implicated in the coordination of chromosome segregation with cell division, forms biomolecular condensates in cytomimetic systems.
View Article and Find Full Text PDFThe actin-like FtsA protein is essential for function of the cell division machinery, or divisome, in many bacteria including . Previous studies demonstrated that purified wild-type FtsA assembles into closed mini-rings on lipid membranes, but oligomeric variants of FtsA such as FtsA and FtsA can bypass certain divisome defects and form arc and double-stranded (DS) oligomeric states, respectively, which may reflect conversion of an inactive to an active form of FtsA. However, it remains unproven which oligomeric forms of FtsA are responsible for assembling and activating the divisome.
View Article and Find Full Text PDFThe actin-like FtsA protein is essential for function of the cell division machinery, or divisome, in many bacteria including . Previous studies demonstrated that purified wild-type FtsA assembles into closed mini-rings on lipid membranes, but oligomeric variants of FtsA such as FtsA and FtsA can bypass certain divisome defects and form arc and double-stranded (DS) oligomeric states, respectively, which may reflect conversion of an inactive to an active form of FtsA. Yet, it remains unproven which oligomeric forms of FtsA are responsible for assembling and activating the divisome.
View Article and Find Full Text PDFMacromolecular crowding affects the activity of proteins and functional macromolecular complexes in all cells, including bacteria. Crowding, together with physicochemical parameters such as pH, ionic strength, and the energy status, influences the structure of the cytoplasm and thereby indirectly macromolecular function. Notably, crowding also promotes the formation of biomolecular condensates by phase separation, initially identified in eukaryotic cells but more recently discovered to play key functions in bacteria.
View Article and Find Full Text PDFFtsZ is an essential bacterial protein abundantly studied as a novel and promising target for antimicrobials. FtsZ is highly conserved among bacteria and mycobacteria, and it is crucial for the correct outcome of the cell division process, as it is responsible for the division of the parent bacterial cell into two daughter cells. In recent years, the benzodioxane-benzamide class has emerged as very promising and capable of targeting both Gram-positive and Gram-negative FtsZs.
View Article and Find Full Text PDFThe cell division machinery or "divisome" of many bacteria, including Escherichia coli, contains homologs of tubulin (FtsZ) and actin (FtsA) that interact with each other to promote the synthesis of septal peptidoglycan. FtsA oligomers have an essential role as a track for tethering dynamically treadmilling FtsZ protofilaments to the cytoplasmic membrane. Other bacterial cytoskeletal oligomers such as MreB also assemble on and move along the membrane.
View Article and Find Full Text PDFThe conserved process of cell division in bacteria has been a long-standing target for antimicrobials, although there are few examples of potent broad-spectrum compounds that inhibit this process. Most currently available compounds acting on division are directed towards the FtsZ protein, a self-assembling GTPase that is a central element of the division machinery in most bacteria. Benzodioxane-benzamides are promising candidates, but poorly explored in Gram-negatives.
View Article and Find Full Text PDFThe ability to split one cell into two is fundamental to all life, and many bacteria can accomplish this feat several times per hour with high accuracy. Most bacteria call on an ancient homologue of tubulin, called FtsZ, to localize and organize the cell division machinery, the divisome, into a ring-like structure at the cell midpoint. The divisome includes numerous other proteins, often including an actin homologue (FtsA), that interact with each other at the cytoplasmic membrane.
View Article and Find Full Text PDFMost bacteria use the tubulin homolog FtsZ to organize their cell division. FtsZ polymers initially assemble into mobile complexes that circle around a ring-like structure at the cell midpoint, followed by the recruitment of other proteins that will constrict the cytoplasmic membrane and synthesize septal peptidoglycan to divide the cell. Despite the need for FtsZ polymers to associate with the membrane, FtsZ lacks intrinsic membrane binding ability.
View Article and Find Full Text PDFCytokinesis is a fundamental process for bacterial survival and proliferation, involving the formation of a ring by filaments of the GTPase FtsZ, spatio-temporally regulated through the coordinated action of several factors. The mechanisms of this regulation remain largely unsolved, but the inhibition of FtsZ polymerization by the nucleoid occlusion factor SlmA and filament stabilization by the widely conserved cross-linking protein ZapA are known to play key roles. It was recently described that FtsZ, SlmA and its target DNA sequences (SlmA-binding sequence (SBS)) form phase-separated biomolecular condensates, a type of structure associated with cellular compartmentalization and resistance to stress.
View Article and Find Full Text PDFFtsA, a homolog of actin, is essential for cell division of Escherichia coli and is widely conserved among many bacteria. FtsA helps to tether polymers of the bacterial tubulin homolog FtsZ to the cytoplasmic membrane as part of the cytokinetic Z ring. GFP fusions to FtsA have illuminated FtsA's localization in live E.
View Article and Find Full Text PDFDynamic biomolecular condensates formed by liquid-liquid phase separation can regulate the spatial and temporal organization of proteins, thus modulating their functional activity in cells. Previous studies showed that the cell division protein FtsZ from formed dynamic phase-separated condensates with nucleoprotein complexes containing the FtsZ spatial regulator SlmA under crowding conditions, with potential implications for condensate-mediated spatiotemporal control of FtsZ activity in cell division. In the present study, we assessed formation of these condensates in the presence of lipid surfaces and glutamate ions to better approximate the intracellular environment.
View Article and Find Full Text PDFIn most bacteria, cell division is centrally organized by the FtsZ protein, which assembles into dynamic filaments at the division site along the cell membrane that interact with other key cell division proteins. In gammaproteobacteria such as Escherichia coli, FtsZ filaments are anchored to the cell membrane by two essential proteins, FtsA and ZipA. Canonically, this interaction was believed to be mediated solely by the FtsZ C-terminal peptide (CTP) domain that interacts with these and several other regulatory proteins.
View Article and Find Full Text PDFWidespread antimicrobial resistance among bacterial pathogens is a serious threat to public health. Thus, identification of new targets and development of new antibacterial agents are urgently needed. Although cell division is a major driver of bacterial colonization and pathogenesis, its targeting with antibacterial compounds is still in its infancy.
View Article and Find Full Text PDFMultidrug resistant is a severe threat, responsible for most of the nosocomial infections globally. This resistant strain is associated with a 64% increase in death compared to the antibiotic-susceptible strain. The prokaryotic protein FtsZ and the cell division cycle have been validated as potential targets to exploit in the general battle against antibiotic resistance.
View Article and Find Full Text PDFFtsZ is an essential and central protein for cell division in most bacteria. Because of its ability to organize into dynamic polymers at the cell membrane and recruit other protein partners to form a "divisome", FtsZ is a leading target in the quest for new antibacterial compounds. Strategies to potentially arrest the essential and tightly regulated cell division process include perturbing FtsZ's ability to interact with itself and other divisome proteins.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Cell Res
April 2021
Biomolecular condensation through phase separation may be a novel mechanism to regulate bacterial processes, including cell division. Previous work revealed that FtsZ, a protein essential for cytokinesis in most bacteria, forms biomolecular condensates with SlmA, a protein that protects the chromosome from damage inflicted by the division machinery in Escherichia coli. The absence of condensates composed solely of FtsZ under the conditions used in that study suggested this mechanism was restricted to nucleoid occlusion by SlmA or to bacteria containing this protein.
View Article and Find Full Text PDFPrevious work identified gene product 56 (gp56), encoded by the lytic bacteriophage SP01, as being responsible for inhibition of cell division during its infection. Assembly of the essential tubulin-like protein FtsZ into a ring-shaped structure at the nascent site of cytokinesis determines the timing and position of division in most bacteria. This FtsZ ring serves as a scaffold for recruitment of other proteins into a mature division-competent structure permitting membrane constriction and septal cell wall synthesis.
View Article and Find Full Text PDFProtection of the chromosome from scission by the division machinery during cytokinesis is critical for bacterial survival and fitness. This is achieved by nucleoid occlusion, which, in conjunction with other mechanisms, ensures formation of the division ring at midcell. In , this mechanism is mediated by SlmA, a specific DNA binding protein that antagonizes assembly of the central division protein FtsZ into a productive ring in the vicinity of the chromosome.
View Article and Find Full Text PDFCell growth and division are coordinated, ensuring homeostasis under any given growth condition, with division occurring as cell mass doubles. The signals and controlling circuit(s) between growth and division are not well understood; however, it is known in that the essential GTPase Era, which is growth rate regulated, coordinates the two functions and may be a checkpoint regulator of both. We have isolated a mutant of Era that separates its effect on growth and division.
View Article and Find Full Text PDFMotile bacteria sense chemical gradients with transmembrane receptors organised in supramolecular signalling arrays. Understanding stimulus detection and transmission at the molecular level requires precise structural characterisation of the array building block known as a core signalling unit. Here we introduce an Escherichia coli strain that forms small minicells possessing extended and highly ordered chemosensory arrays.
View Article and Find Full Text PDFMost bacteria divide by corralling the tubulin-like FtsZ protein to mid-cell, where it assembles into a ring of treadmilling membrane-tethered oligomers. A study in this issue reveals new details about how FtsZ finds its way to the ring.
View Article and Find Full Text PDFBacteria such as divide by organizing filaments of FtsZ, a tubulin homolog that assembles into dynamic treadmilling membrane-associated protein filaments at the cell midpoint. FtsA and ZipA proteins are required to tether these filaments to the inner face of the cytoplasmic membrane, and loss of either tether is lethal. ZipA from and other closely related species harbors a long linker region that connects the essential N-terminal transmembrane domain to the C-terminal globular FtsZ-binding domain, and part of this linker includes a P/Q-rich peptide that is predicted to be intrinsically disordered.
View Article and Find Full Text PDFMacromolecular condensation resulting from biologically regulated liquid-liquid phase separation is emerging as a mechanism to organize intracellular space in eukaryotes, with broad implications for cell physiology and pathology. Despite their small size, bacterial cells are also organized by proteins such as FtsZ, a tubulin homolog that assembles into a ring structure precisely at the cell midpoint and is required for cytokinesis. Here, we demonstrate that FtsZ can form crowding-induced condensates, reminiscent of those observed for eukaryotic proteins.
View Article and Find Full Text PDF