A new indole based chalcone molecule MOMIPP induced methuosis mediated cell death in gliobastoma and other cancer cell lines. But the drug was insoluble in water and had a very short plasma half-life. The purpose of this work was to develop a formulation that can provide sustained levels of MOMIPP in vivo.
View Article and Find Full Text PDFMacropinocytosis is a clathrin-independent endocytosis of extracellular fluid that may contribute to cancer aggressiveness through nutrient supply, recycling of plasma membrane and receptors, and exosome internalization. Macropinocytosis may be notably triggered by epidermal growth factor receptor (EGFR) and platelet-derived growth factor receptor (PDGFR), two well-known markers for glioblastoma aggressiveness. Therefore, we studied whether the expression of key actors of macropinocytosis is modified in human glioma datasets.
View Article and Find Full Text PDFBackground: Synthetic indolyl- pyridinyl- propenones (IPPs) induce methuosis, a form of non-apoptotic cell death, in glioblastoma and other cancer cell lines. Methuosis is characterized by accumulation of cytoplasmic vacuoles derived from macropinosomes and late endosomes, followed by metabolic failure and rupture of the plasma membrane. However, not all IPPs that cause vacuolization are cytotoxic.
View Article and Find Full Text PDFPurpose: 3-(6-Methoxy-2-methyl-1H-indol-3-yl)-1-(4-pyridinyl)-2-propene-1-one (6-MOMIPP) is a novel indole-based chalcone that disrupts microtubules. The present study aims to define the mechanism through which 6-MOMIPP induces cell death and to evaluate the efficacy of the compound in penetrating the blood-brain barrier and inhibiting growth of glioblastoma xenografts.
Methods: The effects of 6-MOMIPP were evaluated in cultured U251 glioblastoma cells, using viability, flow cytometry, and tubulin polymerization assays.
The KRAS oncogene, present in over 90% of pancreatic ductal adenocarcinomas, is most frequently the result of one of three gain-of-function substitution mutations of codon 12 glycine. Thus far, RAS mutations have been clinically refractory to both direct and selective inhibition by systemic therapeutics. This report presents the results of pre-clinical assessment of a lipoplex comprising a plasmid-encoded, modular bi-functional shRNA (bi-shRNA), which executes selective and multi-mutant allelic KRASG12mut gene silencing, encased within a fusogenic liposome systemic delivery vehicle.
View Article and Find Full Text PDFChemotherapy, a mainstay modality for cancer, is often hindered by systemic toxicity and side effects. With the emergence of nanomedicine, the development of drug therapy has shifted toward targeted therapy. Hyaluronan (HA) is an ideal molecule as a targeted delivery system because many carcinomas overexpress HA receptors.
View Article and Find Full Text PDFExosomes are produced from mammalian cells when multivesicular endosomes fuse with the plasma membrane, releasing their intralumenal vesicles. In this study we assessed the effects of MOPIPP, a novel indole-based chalcone, and vacuolin-1, a distinct triazine-based compound, on exosome production in cultured glioblastoma and 293T cells. Both compounds promote vacuolization of late endosome compartments and interfere with trafficking of late endosomes to lysosomes, without significant cytotoxicity.
View Article and Find Full Text PDFMethuosis is a form of non-apoptotic cell death involving massive vacuolization of macropinosome-derived endocytic compartments, followed by a decline in metabolic activity and loss of membrane integrity. To explore the induction of methuosis as a potential therapeutic strategy for killing cancer cells, we have developed small molecules (indole-based chalcones) that trigger this form of cell death in glioblastoma and other cancer cell lines. Here, we report that in addition to causing fusion and expansion of macropinosome compartments, the lead compound, 3-(5-methoxy-2-methyl-1H-indol-3-yl)-1-(4-pyridinyl)-2-propen-1-one (MOMIPP), disrupts vesicular trafficking at the lysosomal nexus, manifested by impaired degradation of EGF and LDL receptors, defective processing of procathepsins, and accumulation of autophagosomes.
View Article and Find Full Text PDFCertain indolyl-pyridinyl-propenone analogues kill glioblastoma cells that have become resistant to conventional therapeutic drugs. Some of these analogues induce a novel form of non-apoptotic cell death called methuosis, while others primarily cause microtubule disruption. Ready access to 5-indole substitution has allowed characterization of this position to be important for both types of mechanisms when a simple methoxy group is present.
View Article and Find Full Text PDFAlthough macropinocytosis is widely recognized as a distinct form of fluid-phase endocytosis in antigen-presenting dendritic cells, it also occurs constitutively in many other normal and transformed cell types. Recent studies have established that various genetic or pharmacological manipulations can hyperstimulate macropinocytosis or disrupt normal macropinosome trafficking pathways, leading to accumulation of greatly enlarged cytoplasmic vacuoles. In some cases, this extreme vacuolization is associated with a unique form of non-apoptotic cell death termed "methuosis," from the Greek methuo (to drink to intoxication).
View Article and Find Full Text PDFMethuosis is a form of nonapoptotic cell death characterized by an accumulation of macropinosome-derived vacuoles with eventual loss of membrane integrity. Small molecules inducing methuosis could offer significant advantages compared to more traditional anticancer drug therapies that typically rely on apoptosis. Herein we further define the effects of chemical substitutions at the 2- and 5-indolyl positions on our lead compound 3-(5-methoxy-2-methyl-1H-indol-3-yl)-1-(4-pyridinyl)-2-propene-1-one (MOMIPP).
View Article and Find Full Text PDFApoptosis is the most widely recognized form of physiological programmed cell death. During the past three decades, various nonapoptotic forms of cell death have gained increasing attention, largely because of their potential importance in pathological processes, toxicology, and cancer therapy. A recent addition to the panoply of cell death phenotypes is methuosis.
View Article and Find Full Text PDFBecause many cancers harbor mutations that confer resistance to apoptosis, there is a need for therapeutic agents that can trigger alternative forms of cell death. Methuosis is a novel form of non-apoptotic cell death characterized by accumulation of vacuoles derived from macropinosomes and endosomes. Previous studies identified an indole-based chalcone, 3-(5-methoxy-2-methylindol-3-yl)-1-(4-pyridinyl)-2-propen-1-one (MOMIPP), that induces methuosis in human cancer cells.
View Article and Find Full Text PDFMethuosis is a novel caspase-independent form of cell death in which massive accumulation of vacuoles derived from macropinosomes ultimately causes cells to detach from the substratum and rupture. We recently described a chalcone-like compound, 3-(2-methyl-1H-indol-3-yl)-1-(4-pyridinyl)-2-propen-1-one (i.e.
View Article and Find Full Text PDFCalcitriol or 1,25-dihydroxyvitamin D3, the hormonally active form of vitamin D, as well as vitamin D analogs, has been shown to increase sensitivity to ionizing radiation in breast tumor cells. The current studies indicate that the combination of 1,25-dihydroxyvitamin D3 with radiation appears to kill p53 wild-type, estrogen receptor-positive ZR-75-1 breast tumor cells through autophagy. Minimal apoptosis was observed based on cell morphology by DAPI and TUNEL staining, annexin/PI analysis, caspase-3, and PARP cleavage as well as cell cycle analysis.
View Article and Find Full Text PDFBackground: Methuosis is a unique form of non-apoptotic cell death triggered by alterations in the trafficking of clathrin-independent endosomes, ultimately leading to extreme vacuolization and rupture of the cell.
Results: Here we describe a novel chalcone-like molecule, 3-(2-methyl-1H- indol-3-yl)-1-(4-pyridinyl)-2-propen-1-one (MIPP) that induces cell death with the hallmarks of methuosis. MIPP causes rapid accumulation of vacuoles derived from macropinosomes, based on time-lapse microscopy and labeling with extracellular fluid phase tracers.
Ras GTPases are best known for their ability to serve as molecular switches regulating cell growth, differentiation and survival. Gene mutations that result in expression of constitutively active forms of Ras have been linked to oncogenesis in animal models and humans. However, over the past two decades, evidence has gradually accumulated to support a paradoxical role for Ras proteins in the initiation of cell death pathways.
View Article and Find Full Text PDFMethuosis is a unique form of nonapoptotic cell death triggered by alterations in the trafficking of clathrin-independent endosomes, ultimately leading to extreme vacuolization and rupture of the cell. Methuosis can be induced in glioblastoma cells by expression of constitutively active Ras. This study identifies the small GTPases, Rac1 and Arf6, and the Arf6 GTPase-activating protein, GIT1, as key downstream components of the signaling pathway underlying Ras-induced methuosis.
View Article and Find Full Text PDFCalphostin C (cal-C) is a photoactivatable inhibitor that binds to the regulatory domain of protein kinase C (PKC) and to other proteins that contain diacylglycerol/phorbol ester binding sites. Cal-C is cytotoxic against many types of cancer cells, yet the basis for this activity remains poorly understood. Here, we show that one of the earliest effects of cal-C is an impairment of glycoprotein export from the endoplasmic reticulum (ER), accompanied by formation of ER-derived vacuoles.
View Article and Find Full Text PDFAmplification of the oncogene MYCN is a tumorigenic event in the development of a subset of neuroblastomas that commonly consist of undifferentiated or poorly differentiated neuroblasts with unfavorable clinical outcome. The cellular origin of these neuroblasts is unknown. Additionally, the cellular functions and target cells of MYCN in neuroblastoma development remain undefined.
View Article and Find Full Text PDFExpression of activated Ras in glioblastoma cells induces accumulation of large phase-lucent cytoplasmic vacuoles, followed by cell death. This was previously described as autophagic cell death. However, unlike autophagosomes, the Ras-induced vacuoles are not bounded by a double membrane and do not sequester organelles or cytoplasm.
View Article and Find Full Text PDFExpression of activated H-Ras induces a unique form of non-apoptotic cell death in human glioblastoma cells and other specific tumor cell lines. The major cytopathological features of this form of death are the accumulation of large phase-lucent, LAMP1-positive, cytoplasmic vacuoles. In this study we sought to determine if induction of cytoplasmic vacuolation a) depends on Ras farnesylation, b) is specific to H-Ras, and c) is mediated by signaling through the major known Ras effector pathways.
View Article and Find Full Text PDFThe human type III phosphatidylinositol 3-kinase, hVps34, converts phosphatidylinositol (PtdIns) to phosphatidylinositol 3-phosphate [PtdIns(3)P]. Studies using inhibitors of phosphatidylinositide 3-kinases have indicated that production of PtdIns(3)P is important for a variety of vesicle-mediated trafficking events, including endocytosis, sorting of receptors in multivesicular endosomes, and transport of lysosomal enzymes from the trans-Golgi network (TGN) to the endosomes and lysosomes. This study utilizes small interfering (si)RNA-mediated gene silencing to define the specific trafficking pathways in which hVps34 functions in human U-251 glioblastoma cells.
View Article and Find Full Text PDFTyrosine phosphorylation is a fundamental mechanism for regulating the functions of numerous proteins in eukaryotic cells. It has been known for some time that several members of the Rab GTPase family can undergo phosphorylation on serine or threonine residues, but the potential for tyrosine phosphorylation has been appreciated only recently, based on a single example-Rab24. Herein we describe a series of straightforward methods to facilitate an initial assessment of the potential for tyrosine phosphorylation of epitope-tagged Rab proteins transiently expressed in mammalian cells.
View Article and Find Full Text PDFBeclin 1 was originally identified as a novel Bcl-2-interacting protein, but co-immunoprecipitation studies suggest that the major physiological partner for Beclin 1 is the mammalian class III phosphatidylinositol 3-kinase (PI 3-kinase) Vps34. Beclin 1 has been proposed to function as a tumor suppressor by promoting cellular macroautophagy, a process that is known to depend on Vps34. However, an alternative role for Beclin 1 in modulating normal Vps34-dependent protein trafficking pathways has not been ruled out.
View Article and Find Full Text PDF