Publications by authors named "William M Vanderheyden"

Humans with post-traumatic stress disorder (PTSD) exhibit sleep disturbances that include insomnia, nightmares, and enhanced daytime sleepiness. Sleep disturbances are considered a hallmark feature of PTSD; however, little is known about the cellular and molecular mechanisms regulating trauma-induced sleep disorders. Using a rodent model of PTSD called "Single Prolonged Stress" (SPS) we examined the requirement of the brain-type fatty acid binding protein Fabp7, an astrocyte expressed lipid-signaling molecule, in mediating trauma-induced sleep disturbances.

View Article and Find Full Text PDF

Fatty acid binding proteins (FABPs) are a family of intracellular lipid chaperone proteins known to play critical roles in the regulation of fatty acid uptake and transport as well as gene expression. Brain-type fatty acid binding protein (FABP7) is enriched in astrocytes and has been implicated in sleep/wake regulation and neurodegenerative diseases; however, the precise mechanisms underlying the role of FABP7 in these biological processes remain unclear. FABP7 binds to both arachidonic acid (AA) and docosahexaenoic acid (DHA), resulting in discrete physiological responses.

View Article and Find Full Text PDF

The bi-directional relationship between sleep and stress has been actively researched as sleep disturbances and stress have become increasingly common in society. Interestingly, the brain and underlying neural circuits important for sleep regulation may respond uniquely to stress that leads to post-traumatic stress disorder (PTSD) and stress that does not. In stress that does not lead to PTSD, the hypothalamic-pituitary-adrenal axis (HPA) pathway is activated normally that results in sympathetic nervous system activation that allows the brain and body to return to baseline functioning.

View Article and Find Full Text PDF

Parkinson's Disease (PD) is the most common movement disorder, and the strongest genetic risk factor for PD is mutations in the glucocerebrosidase gene (). Mutations in also lead to the development of Gaucher Disease (GD), the most common type of lysosomal storage disorder. Current therapeutic approaches fail to address neurological GD symptoms.

View Article and Find Full Text PDF

The astrocyte brain-type fatty-acid binding protein (Fabp7) circadian gene expression is synchronized in the same temporal phase throughout mammalian brain. Cellular and molecular mechanisms that contribute to this coordinated expression are not completely understood, but likely involve the nuclear receptor Rev-erbα (NR1D1), a transcriptional repressor. We performed ChIP-seq on ventral tegmental area (VTA) and identified gene targets of Rev-erbα, including .

View Article and Find Full Text PDF

Physical exercise and fitness may serve as resilience factors to stress exposure. However, the extreme range in human exercise performance suggests that genetic variation for exercise capacity could be a confounding feature to understanding the connection between exercise and stress exposure. To test this idea, we use laboratory rat models selectively bred for a low and high gain in aerobic running capacity in response to training to examine whether an inherent capacity to respond to physical exercise reflects how stress changes neurobiological functioning and regulates fear-associated memory processing.

View Article and Find Full Text PDF

Sleep is intimately linked to cognitive performance and exposure to traumatic stress that leads to post-traumatic stress disorder (PTSD) impairs both sleep and cognitive function. However, the contribution of pre-trauma sleep loss to subsequent trauma-dependent fear-associated memory impairment remains unstudied. We hypothesized that sleep deprivation (SD) prior to trauma exposure may increase the severity of a PTSD-like phenotype in rats exposed to single prolonged stress (SPS), a rodent model of PTSD.

View Article and Find Full Text PDF

Sleep disturbances are commonly found in trauma-exposed populations. Additionally, trauma exposure results in fear-associated memory impairments. Given the interactions of sleep with learning and memory, we hypothesized that increasing sleep duration following trauma exposure would restore overall function and improve trauma-induced fear-associated memory dysfunction.

View Article and Find Full Text PDF

Sleep is a behavior that exists broadly across animal phyla, from flies to humans, and is necessary for normal brain function. Recent studies in both vertebrates and invertebrates have suggested a role for glial cells in sleep regulatory processes. Changes in neural-glial interactions have been shown to be critical for synaptic plasticity and circuit function.

View Article and Find Full Text PDF

Sleep contributes to cognitive functioning and is sufficient to alter brain morphology and function. However, mechanisms underlying sleep regulation remain poorly understood. In mammals, tumor necrosis factor-alpha (TNFα) is known to regulate sleep, and cytokine expression may represent an evolutionarily ancient mechanism in sleep regulation.

View Article and Find Full Text PDF

Sleep-wake abnormalities are common in patients with Alzheimer's disease, and can be a major reason for institutionalization. However, an emerging concept is that these sleep-wake disturbances are part of the causal pathway accelerating the neurodegenerative process. Recently, new findings have provided intriguing evidence for a positive feedback loop between sleep-wake dysfunction and β-amyloid (Aβ) aggregation.

View Article and Find Full Text PDF

Disruption of sleep/wake activity in Alzheimer's disease (AD) patients significantly affects their quality of life and that of their caretakers and is a major contributing factor for institutionalization. Levels of amyloid-β (Aβ) have been shown to be regulated by neuronal activity and to correlate with the sleep/wake cycle. Whether consolidated sleep can be disrupted by Aβ alone is not well understood.

View Article and Find Full Text PDF

Sleep abnormalities, such as insomnia, nightmares, hyper-arousal, and difficulty initiating or maintaining sleep, are diagnostic criteria of posttraumatic stress disorder (PTSD). The vivid dream state, rapid eye movement (REM) sleep, has been implicated in processing emotional memories. We have hypothesized that REM sleep is maladaptive in those suffering from PTSD.

View Article and Find Full Text PDF

Background: Sleep deprivation via gentle handling is time-consuming and personnel-intensive.

New Method: We present here an automated sleep deprivation system via air puffs. Implanted EMG and EEG electrodes were used to assess sleep/waking states in six male Sprague-Dawley rats.

View Article and Find Full Text PDF

Post-traumatic stress disorder (PTSD) is characterized by intrusive memories of a traumatic event, avoidance behavior related to cues of the trauma, emotional numbing, and hyper-arousal. Sleep abnormalities and nightmares are core symptoms of this disorder. In this review, we propose a model which implicates abnormal activity in the locus coeruleus (LC), an important modifier of sleep-wake regulation, as the source of sleep abnormalities and memory abnormalities seen in PTSD.

View Article and Find Full Text PDF

Given the relationship between sleep and plasticity, we examined the role of Extracellular signal-regulated kinase (ERK) in regulating baseline sleep, and modulating the response to waking experience. Both sleep deprivation and social enrichment increase ERK phosphorylation in wild-type flies. The effects of both sleep deprivation and social enrichment on structural plasticity in the LNvs can be recapitulated by expressing an active version of ERK (UAS-ERK(SEM)) pan-neuronally in the adult fly using GeneSwitch (Gsw) Gsw-elav-GAL4.

View Article and Find Full Text PDF

The astrocyte brain fatty acid binding protein (Fabp7) has previously been shown to have a coordinated diurnal regulation of mRNA and protein throughout mouse brain, and an age-dependent decline in protein expression within synaptoneurosomal fractions. Mechanisms that control time-of-day changes in expression and trafficking Fabp7 to the perisynaptic process are not known. In this study, we confirmed an enrichment of Fabp7 mRNA and protein in the astrocytic perisynaptic compartment, and observed a diurnal change in the intracellular distribution of Fabp7 mRNA in molecular layers of hippocampus.

View Article and Find Full Text PDF

We recently reported evidence implicating fatty-acid binding protein (Fabp) in the control of sleep and memory formation. We used Drosophila melanogaster to examine the relationship between sleep and memory through transgenic overexpression of mouse brain-Fabp, Fabp7, or the Drosophila Fabp homolog, (dFabp). The key findings are that 1) a genetically induced increase in daytime consolidated sleep (naps) correlates with an increase in cognitive performance, and 2) a late "window" of memory consolidation occurs days after the traditionally understood "synaptic" consolidation.

View Article and Find Full Text PDF

Sleep is thought to be important for memory consolidation, since sleep deprivation has been shown to interfere with memory processing. However, the effects of augmenting sleep on memory formation are not well known, and testing the role of sleep in memory enhancement has been limited to pharmacological and behavioral approaches. Here we test the effect of overexpressing the brain-type fatty acid binding protein (Fabp7) on sleep and long-term memory (LTM) formation in Drosophila melanogaster.

View Article and Find Full Text PDF
Article Synopsis
  • Central opioid systems, particularly involving ventral striatal enkephalin, influence appetite and the pleasure derived from high-calorie foods like fat and sugar.
  • Infusions of mu-opiate agonists increase feeding, while antagonists reduce it, but there hasn't been much research on how these effects relate to changes in enkephalin gene expression under different food motivation scenarios.
  • The study found that after eating, striatal preproenkephalin (PPE) expression decreased, indicating a role in short-term food motivation, while hypothalamic neuropeptide Y (NPY) was only affected by long-term energy balance, highlighting distinct functions of striatal and hypothalamic peptide systems.
View Article and Find Full Text PDF