In a polyphenic species, differences in resource use are expected among ecotypes, and homogeneity in resource use is expected within an ecotype. Yet, using a broad resource spectrum has been identified as a strategy for fishes living in unproductive northern environments, where food is patchily distributed and ephemeral. We investigated whether specialization of trophic resources by individuals occurred within the generalist piscivore ecotype of lake trout from Great Bear Lake, Canada, reflective of a form of diversity.
View Article and Find Full Text PDFDepth is usually considered the main driver of Lake Trout intraspecific diversity across lakes in North America. Given that Great Bear Lake is one of the largest and deepest freshwater systems in North America, we predicted that Lake Trout intraspecific diversity to be organized along a depth axis within this system. Thus, we investigated whether a deep-water morph of Lake Trout co-existed with four shallow-water morphs previously described in Great Bear Lake.
View Article and Find Full Text PDFRestoration ecologists conduct both basic and applied research using a diversity of funding and collaborative models. Over the last 17 years we have assessed the effectiveness of a stream compensation project in Canada's north, where an independent university-based research program was a condition of the regulatory approval process. This resulted in a non-traditional university-government-industry partnership.
View Article and Find Full Text PDFA generalist strategy, as an adaptation to environmental heterogeneity, is common in Arctic freshwater systems, often accompanied, however, by intraspecific divergence that promotes specialization in niche use. To better understand how resources may be partitioned in a northern system that supports intraspecific diversity of Lake Trout, trophic niches were compared among four shallow-water morphotypes in Great Bear Lake (N65 56' 39″, W120 50' 59″). Bayesian mixing model analyses of stable isotopes of carbon and nitrogen were conducted on adult Lake Trout.
View Article and Find Full Text PDFObjective assessment of habitat compensation is a central yet challenging issue for restoration ecologists. In 1997, a 3.4-km stream channel, designed to divert water around an open pit diamond mine, was excavated in the Barrenlands region of the Canadian Arctic to create productive stream habitat.
View Article and Find Full Text PDFAlthough density-dependent mechanisms in early life-history are important regulators of recruitment in many taxa, consequences of such mechanisms on other life-history stages are poorly understood. To examine interacting and cascading effects of mechanisms acting on different life-history stages, we stocked experimental ponds with fathead minnow (Pimephales promelas) at two different densities. We quantified growth and survival of the stocked fish, the eggs they produced, and the resulting offspring during their first season of life.
View Article and Find Full Text PDFNorthern pike (Esox lucius) are often considered to be specialist piscivores, but under some circumstances will continue to eat invertebrates as adults. To examine effects of fish assemblage composition on the trophic ecology of pike, we combined stable isotope analysis (SIA) of carbon and nitrogen and stomach content analysis (SCA) on pike from five lakes in northern Alberta, three of which contain only pike ("pike-only") and two that also contain yellow perch (Perca flavescens) or white sucker (Catostomus commersoni) ("pike-other"). Fish were more important as prey and empty stomachs, which often characterize piscivores, were significantly more frequent in pike-other than in pike-only lakes.
View Article and Find Full Text PDFOne potentially important effect of interspecific competition in freshwater fish communities is to increase predation intensity from gape-limited piscivores by lowering growth rates of prey species. We investigated the operation and consequences of competition between central mudminnows (Umbra limi) and yearling yellow perch (Perca flavescens) in a system where size-limited predation on mudminnows by larger perch is a principle structuring mechanism. During laboratory experiments in which mudminnows foraged for patchily-presented food in the presence and absence of yearling perch, the food intake of mudminnows decreased at both the population and individual-fish levels when perch were present.
View Article and Find Full Text PDF