Background: Rare variants in melanocortin 4 receptor gene (MC4R) result in a severe form of early-onset obesity; however, it is unclear how these variants may affect abdominal fat distribution, intrahepatic fat accumulation, and related metabolic sequelae.
Methods: Eight hundred seventy-seven youth (6-21 years) with overweight/obesity, recruited from the Yale Pediatric Obesity Clinic in New Haven, CT, underwent genetic analysis to screen for functionally damaging, rare variants (MAF < 0.01) in MC4R.
Knockout (KO) mouse models play critical roles in elucidating biological processes behind disease-associated or disease-resistant traits. As a presumed consequence of gene KO, mice display certain phenotypes. Based on insight into the molecular role of said gene in a biological process, it is inferred that the particular biological process causally underlies the trait.
View Article and Find Full Text PDFBackground And Objectives: Autoantibodies targeting the acetylcholine receptor (AChR), found in patients with myasthenia gravis (MG), mediate pathology through 3 mechanisms: complement-directed tissue damage, blocking of the acetylcholine binding site, and internalization of the AChR. Clinical assays, used to diagnose and monitor patients, measure only autoantibody binding. Consequently, they are limited in providing association with disease burden, understanding of mechanistic heterogeneity, and monitoring therapeutic response.
View Article and Find Full Text PDFMechanisms coordinating pancreatic β cell metabolism with insulin secretion are essential for glucose homeostasis. One key mechanism of β cell nutrient sensing uses the mitochondrial GTP (mtGTP) cycle. In this cycle, mtGTP synthesized by succinyl-CoA synthetase (SCS) is hydrolyzed via mitochondrial PEPCK (PEPCK-M) to make phosphoenolpyruvate, a high-energy metabolite that integrates TCA cycling and anaplerosis with glucose-stimulated insulin secretion (GSIS).
View Article and Find Full Text PDFCEACAM1 promotes insulin extraction, an event that occurs mainly in liver. Phenocopying global Ceacam1 null mice (Cc1(-/-) ), C57/BL6J mice fed a high-fat (HF) diet exhibited reduced hepatic CEACAM1 levels and impaired insulin clearance, followed by hyperinsulinemia, insulin resistance, and visceral obesity. Conversely, forced liver-specific expression of CEACAM1 protected insulin sensitivity and energy expenditure, and limited gain in total fat mass by HF diet in L-CC1 mice.
View Article and Find Full Text PDFCarcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) regulates insulin sensitivity by promoting hepatic insulin clearance. Liver-specific inactivation or global null-mutation of Ceacam1 impairs hepatic insulin extraction to cause chronic hyperinsulinemia, resulting in insulin resistance and visceral obesity. In this study we investigated whether diet-induced insulin resistance implicates changes in hepatic CEACAM1.
View Article and Find Full Text PDFThe MYC oncogene is frequently mutated and overexpressed in human renal cell carcinoma (RCC). However, there have been no studies on the causative role of MYC or any other oncogene in the initiation or maintenance of kidney tumorigenesis. Here, we show through a conditional transgenic mouse model that the MYC oncogene, but not the RAS oncogene, initiates and maintains RCC.
View Article and Find Full Text PDFMucus production by goblet cells of the large intestine serves as a crucial antimicrobial protective mechanism at the interface between the eukaryotic and prokaryotic cells of the mammalian intestinal ecosystem. However, the regulatory pathways involved in goblet cell-induced mucus secretion remain largely unknown. Here, we demonstrate that the NLRP6 inflammasome, a recently described regulator of colonic microbiota composition and biogeographical distribution, is a critical orchestrator of goblet cell mucin granule exocytosis.
View Article and Find Full Text PDFObjective: Insulin resistance is a major characteristic of type 2 diabetes and is causally associated with obesity. Inflammation plays an important role in obesity-associated insulin resistance, but the underlying mechanism remains unclear. Interleukin (IL)-10 is an anti-inflammatory cytokine with lower circulating levels in obese subjects, and acute treatment with IL-10 prevents lipid-induced insulin resistance.
View Article and Find Full Text PDFZfp521, a 30 C2H2 Kruppel-like zinc finger protein, is expressed at high levels at the periphery of early mesenchymal condensations prefiguring skeletal elements and in all developing bones in the perichondrium and periosteum, in osteoblast precursors and osteocytes, and in chondroblast precursors and growth plate prehypertrophic chondrocytes. Zfp521 expression in cultured mesenchymal cells is decreased by BMP-2 and increased by PTHrP, which promote and antagonize osteoblast differentiation, respectively. In vitro, Zfp521 overexpression reduces the expression of several downstream osteoblast marker genes and antagonizes osteoblast differentiation.
View Article and Find Full Text PDFIntroduction: Activator protein (AP)-1 family members play important roles in the development and maintenance of the adult skeleton. Transgenic mice that overexpress the naturally occurring DeltaFosB splice variant of FosB develop severe osteosclerosis. Translation of Deltafosb mRNA produces both DeltaFosB and a further truncated isoform (Delta2DeltaFosB) that lacks known transactivation domains but, like DeltaFosB, induces increased expression of osteoblast marker genes.
View Article and Find Full Text PDFHumans with heterozygous loss-of-function mutations in the hepatocyte nuclear factor-1alpha (HNF1alpha) gene develop beta-cell-deficient diabetes (maturity-onset diabetes of the young type 3), indicating that HNF1alpha gene dosage is critical in beta-cells. However, whether increased HNF1alpha expression might be beneficial or deleterious for beta-cells is unknown. Furthermore, although it is clear that HNF1alpha is required for beta-cell function, it is not known whether this role is cell autonomous or whether there is a restricted developmental time frame for HNF1alpha to elicit gene activation in beta-cells.
View Article and Find Full Text PDFIn developing organs, parathyroid hormone (PTH)/parathyroid hormone-related protein (PTHrP) receptor (PPR) signaling inhibits proliferation and differentiation of mesenchyme-derived cell types resulting in control of morphogenic events. Previous studies using PPR agonists and antagonists as well as transgenic overexpression of the PPR ligand PTHrP have suggested that this ligand receptor combination might regulate the anagen to catagen transition of the hair cycle. To further understand the precise role of PTHrP and the PPR in the hair cycle, we have evaluated hair growth in the traditional K14-PTHrP (KrP) and an inducible bitransgenic PTHrP mice.
View Article and Find Full Text PDFUnlabelled: The PTHrP gene generates low-abundance mRNA and protein products that are not easily localized by in situ hybridization histochemistry or immunohistochemistry. We report here a PTHrP-lacZ knockin mouse in which beta-gal activity seems to provide a simple and sensitive read-out of PTHrP gene expression.
Introduction: PTH-related protein (PTHrP) is widely expressed in fetal and adult tissues, typically as low-abundance mRNA and protein products that maybe difficult to localize by conventional methods.
Oncogenic osteomalacia (OO), a tumor-associated phosphate-wasting syndrome, provides an opportunity to identify regulators of renal phosphate homeostasis. We established cultures from OO-associated tumors. Conditioned medium from these cultures inhibited phosphate uptake in renal tubular epithelial cells.
View Article and Find Full Text PDFOsteoblasts and adipocytes may develop from common bone marrow mesenchymal precursors. Transgenic mice overexpressing DeltaFosB, an AP-1 transcription factor, under the control of the neuron-specific enolase (NSE) promoter show both markedly increased bone formation and decreased adipogenesis. To determine whether the two phenotypes were linked, we targeted overexpression of DeltaFosB in mice to the osteoblast by using the osteocalcin (OG2) promoter.
View Article and Find Full Text PDFCrit Rev Eukaryot Gene Expr
July 2004
A "bone" is really a dynamic and highly interactive complex of many cell and tissue types. In particular, for the majority of skeletal elements to develop and grow, the process of endochondral ossification requires a constantly moving interface between cartilage, invading blood vessels, and bone. A great deal has been learned in recent years about the regulation of chondrocyte proliferation and differentiation by hormones, growth factors, and physiologic stimuli during skeletal development and growth.
View Article and Find Full Text PDFParathyroid hormone-related protein (PTHrP) was discovered a dozen years ago as a product of malignant tumors. It is now known that PTHrP is a paracrine factor with multiple biological functions. One such function is to relax smooth muscle by inhibiting calcium influx into the cell.
View Article and Find Full Text PDF