Publications by authors named "William M Durham"

Methicillin-resistant (MRSA), in which acquisition of [which encodes the cell wall peptidoglycan biosynthesis component penicillin-binding protein 2a (PBP2a)] confers resistance to β-lactam antibiotics, is of major clinical concern. We show that, in the presence of antibiotics, MRSA adopts an alternative mode of cell division and shows an altered peptidoglycan architecture at the division septum. PBP2a can replace the transpeptidase activity of the endogenous and essential PBP2 but not that of PBP1, which is responsible for the distinctive native septal peptidoglycan architecture.

View Article and Find Full Text PDF

Swimming bacteria navigate chemical gradients using temporal sensing to detect changes in concentration over time. Here we show that surface-attached bacteria use a fundamentally different mode of sensing during chemotaxis. We combined microfluidic experiments, massively parallel cell tracking and fluorescent reporters to study how Pseudomonas aeruginosa senses chemical gradients during pili-based 'twitching' chemotaxis on surfaces.

View Article and Find Full Text PDF
Article Synopsis
  • Clostridioides difficile is a bacteria that can cause serious infections, and there aren’t many medicines to treat it, mainly vancomycin.
  • Recently, some bacteria have started to resist vancomycin, but C. difficile hasn’t shown high-level resistance yet.
  • Scientists found that C. difficile can quickly develop resistance, but this makes it less able to spread and survive, which might help doctors keep it under control.
View Article and Find Full Text PDF

Most bacteria live attached to surfaces in densely-packed communities. While new experimental and imaging techniques are beginning to provide a window on the complex processes that play out in these communities, resolving the behaviour of individual cells through time and space remains a major challenge. Although a number of different software solutions have been developed to track microorganisms, these typically require users either to tune a large number of parameters or to groundtruth a large volume of imaging data to train a deep learning model-both manual processes which can be very time consuming for novel experiments.

View Article and Find Full Text PDF

Self-organisation is the spontaneous emergence of spatio-temporal structures and patterns from the interaction of smaller individual units. Examples are found across many scales in very different systems and scientific disciplines, from physics, materials science and robotics to biology, geophysics and astronomy. Recent research has highlighted how self-organisation can be both mediated and controlled by confinement.

View Article and Find Full Text PDF

Microfluidic devices are widely used in many fields of biology, but a key limitation is that cells are typically surrounded by solid walls, making it hard to access those that exhibit a specific phenotype for further study. Here, we provide a general and flexible solution to this problem that exploits the remarkable properties of microfluidic circuits with fluid walls─transparent interfaces between culture media and an immiscible fluorocarbon that are easily pierced with pipets. We provide two proofs of concept in which specific cell subpopulations are isolated and recovered: (i) murine macrophages chemotaxing toward complement component 5a and (ii) bacteria () in developing biofilms that migrate toward antibiotics.

View Article and Find Full Text PDF

Many species of motile phytoplankton can actively form long multicellular chains by remaining attached to one another after cell division. While chains swim more rapidly than single cells of the same species, chain formation also markedly reduces phytoplankton's ability to maintain their bearing. This suggests that turbulence, which acts to randomize swimming direction, could sharply attenuate a chain's ability to migrate between well-lit surface waters during the day and deeper nutrient-rich waters at night.

View Article and Find Full Text PDF

Microfluidics has great potential, but the complexity of fabricating and operating devices has limited its use. Here we describe a method - Freestyle Fluidics - that overcomes many key limitations. In this method, liquids are confined by fluid (not solid) walls.

View Article and Find Full Text PDF

Microbes often live in dense communities called biofilms, where competition between strains and species is fundamental to both evolution and community function. Although biofilms are commonly found in soil-like porous environments, the study of microbial interactions has largely focused on biofilms growing on flat, planar surfaces. Here, we use microfluidic experiments, mechanistic models, and game theory to study how porous media hydrodynamics can mediate competition between bacterial genotypes.

View Article and Find Full Text PDF

Bacteria form surface-attached communities, known as biofilms, which are central to bacterial biology and how they affect us. Although surface-attached bacteria often experience strong chemical gradients, it remains unclear whether single cells can effectively perform chemotaxis on surfaces. Here we use microfluidic chemical gradients and massively parallel automated tracking to study the behavior of the pathogen Pseudomonas aeruginosa during early biofilm development.

View Article and Find Full Text PDF

Bacteria form dense surface-associated communities known as biofilms that are central to their persistence and how they affect us. Biofilm formation is commonly viewed as a cooperative enterprise, where strains and species work together for a common goal. Here we explore an alternative model: biofilm formation is a response to ecological competition.

View Article and Find Full Text PDF

The motility of microorganisms is often biased by gradients in physical and chemical properties of their environment, with myriad implications on their ecology. Here we show that fluid acceleration reorients gyrotactic plankton, triggering small-scale clustering. We experimentally demonstrate this phenomenon by studying the distribution of the phytoplankton Chlamydomonas augustae within a rotating tank and find it to be in good agreement with a new, generalized model of gyrotaxis.

View Article and Find Full Text PDF

Patchiness plays a fundamental role in phytoplankton ecology by dictating the rate at which individual cells encounter each other and their predators. The distribution of motile phytoplankton species is often considerably more patchy than that of non-motile species at submetre length scales, yet the mechanism generating this patchiness has remained unknown. Here we show that strong patchiness at small scales occurs when motile phytoplankton are exposed to turbulent flow.

View Article and Find Full Text PDF

For over four decades, aggregations of phytoplankton known as thin layers have been observed to harbor large amounts of photosynthetic cells within narrow horizontal bands. Field observations have revealed complex linkages among thin phytoplankton layers, the physical environment, cell behavior, and higher trophic levels. Several mechanisms have been proposed to explain layer formation and persistence, in the face of the homogenizing effect of turbulent dispersion.

View Article and Find Full Text PDF

We show that gyrotactic motility within a steady vortical flow leads to tightly clustered aggregations of microorganisms. Two dimensionless numbers, characterizing the relative swimming speed and stability against overturning by vorticity, govern the coupling between motility and flow. Exploration of parameter space reveals a striking array of patchiness regimes.

View Article and Find Full Text PDF

The growth of microbial cultures in the laboratory often is assessed informally with a quick flick of the wrist: dense suspensions of microorganisms produce translucent "swirls" when agitated. Here, we rationalize the mechanism behind this phenomenon and show that the same process may affect the propagation of light through the upper ocean. Analogous to the shaken test tubes, the ocean can be characterized by intense fluid motion and abundant microorganisms.

View Article and Find Full Text PDF

Thin layers of phytoplankton are important hotspots of ecological activity that are found in the coastal ocean, meters beneath the surface, and contain cell concentrations up to two orders of magnitude above ambient concentrations. Current interpretations of their formation favor abiotic processes, yet many phytoplankton species found in these layers are motile. We demonstrated that layers formed when the vertical migration of phytoplankton was disrupted by hydrodynamic shear.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionk6ph0aj0hikpf1f7va9gqfsgd5tl4chm): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once