Publications by authors named "William M Debello"

Emergent response properties of sensory neurons depend on circuit connectivity and somatodendritic processing. Neurons of the barn owl's external nucleus of the inferior colliculus (ICx) display emergence of spatial selectivity. These neurons use interaural time difference (ITD) as a cue for the horizontal direction of sound sources.

View Article and Find Full Text PDF

We discovered a new type of dendritic spine. It is found on space-specific neurons in the barn owl inferior colliculus, a site of experience-dependent plasticity. Connectomic analysis revealed dendritic protrusions of unusual morphology including topological holes, hence termed "toric" spines ( = 76).

View Article and Find Full Text PDF

Juvenile barn owls readily adapt to prismatic spectacles, whereas adult owls living under standard aviary conditions do not. We previously demonstrated that phosphorylation of the cyclic-AMP response element-binding protein (CREB) provides a readout of the instructive signals that guide plasticity in juveniles. Here we investigated phosphorylation of calcium/calmodulin-dependent protein kinase II (pCaMKII) in both juveniles and adults.

View Article and Find Full Text PDF

Experience-dependent formation of synaptic input clusters can occur in juvenile brains. Whether this also occurs in adults is largely unknown. We previously reconstructed the normal and learned circuits of prism-adapted barn owls and found that changes in clustering of axo-dendritic contacts (putative synapses) predicted functional circuit strength.

View Article and Find Full Text PDF

The recent development of powerful tools for high-throughput mapping of synaptic networks promises major advances in understanding brain function. One open question is how circuits integrate and store information. Competing models based on random vs.

View Article and Find Full Text PDF

The human brain has accumulated many useful building blocks over its evolutionary history, and the best knowledge of these has often derived from experiments performed in animal species that display finely honed abilities. In this article we review a model system at the forefront of investigation into the neural bases of information processing, plasticity, and learning: the barn owl auditory localization pathway. In addition to the broadly applicable principles gleaned from three decades of work in this system, there are good reasons to believe that continued exploration of the owl brain will be invaluable for further advances in understanding of how neuronal networks give rise to behavior.

View Article and Find Full Text PDF

The barn owl midbrain contains mutually aligned maps of auditory and visual space. Throughout life, map alignment is maintained through the actions of an instructive signal that encodes the magnitude of auditory-visual mismatch. The intracellular signaling pathways activated by this signal are unknown.

View Article and Find Full Text PDF

How does the brain encode life experiences? Recent results derived from vital imaging, computational modeling, cellular physiology and systems neuroscience have pointed to local changes in synaptic connectivity as a powerful substrate, here termed micro-rewiring. To examine this hypothesis, I first review findings on micro-structural dynamics with focus on the extension and retraction of dendritic spines. Although these observations demonstrate a biological mechanism, they do not inform us of the specific changes in circuit configuration that might occur during learning.

View Article and Find Full Text PDF

Computational models predict that experience-driven clustering of coactive synapses is a mechanism for information storage. This prediction has remained untested, because it is difficult to approach through time-lapse analysis. Here, we exploit a unique feature of the barn owl auditory localization pathway that permits retrospective analysis of prelearned and postlearned circuitry: owls reared wearing prismatic spectacles develop an adaptive microcircuit that coexists with the native one but can be analyzed independently based on topographic location.

View Article and Find Full Text PDF

Owls reared wearing prismatic spectacles learn to make adaptive orienting movements. This instructed learning depends on re-calibration of the midbrain auditory space map, which in turn involves the formation of new synapses. Here we investigated whether these processes are associated with differential gene expression, using longSAGE.

View Article and Find Full Text PDF

In the owl midbrain, a map of auditory space is synthesized in the inferior colliculus (IC) and conveyed to the optic tectum (OT). Ascending auditory information courses through these structures via topographic axonal projections. Little is known about the molecular composition of projection neurons or their postsynaptic targets.

View Article and Find Full Text PDF

In the midbrain auditory localization pathway of the barn owl, a map of auditory space is relayed from the external nucleus of the inferior colliculus (ICX) to the deep and intermediate layers of the optic tectum (OT) and from these layers to the superficial layers. Within the OT, the auditory space map aligns with a visual map of space. Raising young barn owls with a prismatic displacement of the visual field leads to progressive changes in auditory tuning in the OT that tend to realign the auditory space map with the prismatically displaced visual space map.

View Article and Find Full Text PDF