Publications by authors named "William Luckett"

The article "Intraoperative Imaging with a Portable Gamma Camera May Reduce the False-Negative Rate for Melanoma Sentinel Lymph Node Surgery," written by Stanley P. Leong et al., was originally published electronically on the publisher's internet portal (currently SpringerLink) on August 13, 2018, without open access.

View Article and Find Full Text PDF

Background: Preoperative imaging and intraoperative gamma probe (GP) localization is standard for identifying sentinel lymph nodes (SLNs) in melanoma patients. The aim of this prospective Institutional Review Board-approved study was to investigate whether an intraoperative portable gamma camera (PGC) improves SLN detection over the GP.

Methods: Lymphoscintigraphy and single photon emission computed tomography/computed tomography were performed after injection of 99mTc-Tilmanocept in melanoma patients (≥ 18 years, Breslow thickness ≥ 1.

View Article and Find Full Text PDF

The intestinal epithelium is the first physiological barrier breached by the Gram-positive facultative pathogen during an in vivo infection. binds to the epithelial host cell receptor E-cadherin, which mediates a physical link between the bacterium and filamentous actin (F-actin). However, the importance of anchoring the bacterium to F-actin through E-cadherin for bacterial invasion has not been tested directly in epithelial cells.

View Article and Find Full Text PDF

Citrulline-malate (CM) has been proposed to provide an ergogenic effect during resistance exercise; however, there is a paucity of research investigating these claims. Therefore, we investigated the impact that CM supplementation would have on repeated bouts of resistance exercise. Fourteen resistance-trained males participated in a randomized, counterbalanced, double-blind study.

View Article and Find Full Text PDF

Conditionally replication-competent Herpes Simplex Virus Type 1 (HSV-1) vectors expressing foreign genes have been developed as experimental therapeutic agents. Traditional methods of virus construction, including growth selection based on thymidine kinase gene expression, and color selection based on a reporter gene expression are often time-consuming and relatively inefficient. This review summarizes the various strategies developed in recent years for the rapid and efficient construction of novel conditionally replication-competent mutant HSV expressing multiple foreign genes.

View Article and Find Full Text PDF

Recombinant live-attenuated Listeria monocytogenes is currently being developed as a vaccine platform for treatment or prevention of malignant and infectious diseases. The effectiveness of complex biologic vaccines, such as recombinant viral and bacterial vectors, can be limited by either preexisting or vaccine-induced vector-specific immunity. We characterized the level of L.

View Article and Find Full Text PDF

Bacillus anthracis is the causative agent of anthrax. We have developed a novel whole-bacterial-cell anthrax vaccine utilizing B. anthracis that is killed but metabolically active (KBMA).

View Article and Find Full Text PDF

Recombinant vaccines derived from the facultative intracellular bacterium Listeria monocytogenes are presently undergoing early-stage clinical evaluation in oncology treatment settings. This effort has been stimulated in part due to preclinical results that illustrate potent activation of innate and adaptive immune effectors by L. monocytogenes vaccines, combined with efficacy in rigorous animal models of malignant and infectious disease.

View Article and Find Full Text PDF

Background: The human erythrovirus B19 (B19) is a small (18- to 26-nm) nonenveloped virus with a single-stranded DNA genome of 5.6 kb. B19 is clinically significant and is also generally resistant to pathogen inactivation methods.

View Article and Find Full Text PDF

The facultative intracellular bacterium Listeria monocytogenes is being developed as a cancer vaccine platform because of its ability to induce potent innate and adaptive immunity. For successful clinical application, it is essential to develop a Listeria platform strain that is safe yet retains the potency of vaccines based on wild-type bacteria. Here, we report the development of a recombinant live-attenuated vaccine platform strain that retains the potency of the fully virulent pathogen, combined with a >1,000-fold reduction in toxicity, as compared with wild-type Listeria.

View Article and Find Full Text PDF