Amorphous solids are traditionally assumed to set the lower bound to the vibrational thermal conductivity of a material due to the high degree of structural disorder. Here, were demonstrate the ability to increase the thermal conductivity of amorphous solids through ion irradiation, in turn, altering the bonding network configuration. We report on the thermal conductivity of hydrogenated amorphous carbon implanted with C ions spanning fluences of 3 × 10-8.
View Article and Find Full Text PDFThe role of interfacial nonidealities and disorder on thermal transport across interfaces is traditionally assumed to add resistance to heat transfer, decreasing the thermal boundary conductance (TBC). However, recent computational studies have suggested that interfacial defects can enhance this thermal boundary conductance through the emergence of unique vibrational modes intrinsic to the material interface and defect atoms, a finding that contradicts traditional theory and conventional understanding. By manipulating the local heat flux of atomic vibrations that comprise these interfacial modes, in principle, the TBC can be increased.
View Article and Find Full Text PDFSilicon oxynitride (Si-O-N) is a new biomaterial in which its O/N ratio is tunable for variable Si release and its subsequent endocytotic incorporation into native hydroxyapatite for enhanced bone healing. However, the effect of nitrogen and hydrogen bonding on the formation and structure of hydroxyapatite is unclear. This study aims to uncover the roles of H and N in tuning Si-O-N surface bioactivity for hydroxyapatite formation.
View Article and Find Full Text PDFGrazing-incidence Rutherford backscattering and angle-resolved x-ray photoelectron spectrometry are used to determine the ion-concentration profiles near the surface of a solution consisting of a salt (TEABr) in a weakly polar organic liquid (polyethylene glycol) with atomic-layer depth resolution. The predictions of a model, in which ions in solution are repelled from the surface due to a screened Coulomb interaction with their image charge, are in good agreement with measured ion profiles. This contrasts with the behavior of salts in aqueous and highly polar organic solutions.
View Article and Find Full Text PDFJ Biomed Mater Res A
December 2003
CaTiO(3) is a strong candidate to form at the interface between hydroxylapatite (HA) and titanium implants during many coating procedures. However, few studies have compared the cytocompatibility properties of CaTiO(3) to HA pertinent for bone-cell function. For this reason, the objective of the present in vitro study was to determine the ability of bone-forming cells (osteoblasts) to adhere on titanium coated with HA that resulted in the formation of CaTiO(3).
View Article and Find Full Text PDFThe chemical reactions between hydroxylapatite (HA) and titanium were studied in three different kinds of experiments to increase understanding of how to bond HA to titanium for implant materials. HA powder was bonded to a titanium rod with hot isostatic pressing. Interdiffusion of the HA elements and titanium was found in concentration profiles measured in the electron microprobe.
View Article and Find Full Text PDFHere we describe the use of Rutherford backscattering spectrometry (RBS) to measure quantitative in situ elemental profiles with high depth resolution, online and nondestructively, in volatile substances (liquid and frozen acids, ice). Samples for analysis are held in a chamber with controlled temperature and partial pressures designed to match conditions for aerosols in Earth's atmosphere. This technique is demonstrated in studies of water solubility in sulfuric acid, hydrochloric acid (HCl) on ice surfaces, the formation of a HCl-hexahydrate surface layer on evaporating HCl-doped ice, and the diffusion of water through this layer.
View Article and Find Full Text PDF