Publications by authors named "William L. Straube"

Purpose: Patients with centrally located early-stage non-small-cell lung cancer (NSCLC) are at a higher risk of toxicity from high-dose ablative radiotherapy. NRG Oncology/RTOG 0813 was a phase I/II study designed to determine the maximum tolerated dose (MTD), efficacy, and toxicity of stereotactic body radiotherapy (SBRT) for centrally located NSCLC.

Materials And Methods: Medically inoperable patients with biopsy-proven, positron emission tomography-staged T1 to 2 (≤ 5 cm) N0M0 centrally located NSCLC were accrued into a dose-escalating, five-fraction SBRT schedule that ranged from 10 to 12 Gy/fraction (fx) delivered over 1.

View Article and Find Full Text PDF

Importance: Stereotactic body radiation therapy (SBRT) has become a standard treatment for patients with medically inoperable early-stage lung cancer. However, its effectiveness in patients medically suitable for surgery is unclear.

Objective: To evaluate whether noninvasive SBRT delivered on an outpatient basis can safely eradicate lung cancer and cure selected patients with operable lung cancer, obviating the need for surgical resection.

View Article and Find Full Text PDF

A substantial barrier to the single- and multi-institutional aggregation of data to supporting clinical trials, practice quality improvement efforts, and development of big data analytics resource systems is the lack of standardized nomenclatures for expressing dosimetric data. To address this issue, the American Association of Physicists in Medicine (AAPM) Task Group 263 was charged with providing nomenclature guidelines and values in radiation oncology for use in clinical trials, data-pooling initiatives, population-based studies, and routine clinical care by standardizing: (1) structure names across image processing and treatment planning system platforms; (2) nomenclature for dosimetric data (eg, dose-volume histogram [DVH]-based metrics); (3) templates for clinical trial groups and users of an initial subset of software platforms to facilitate adoption of the standards; (4) formalism for nomenclature schema, which can accommodate the addition of other structures defined in the future. A multisociety, multidisciplinary, multinational group of 57 members representing stake holders ranging from large academic centers to community clinics and vendors was assembled, including physicists, physicians, dosimetrists, and vendors.

View Article and Find Full Text PDF

Like other technically sophisticated medical endeavours, a hyperthermia clinic relies on skilled staffing. Physicians, physicists and technologists perform multiple tasks to ensure properly functioning equipment, appropriate patient selection, and to plan and administer this treatment. This paper reviews the competencies and tasks that are used in a hyperthermia clinic.

View Article and Find Full Text PDF

Purpose: To provide quantitative information on the image registration differences from multiple systems for image-guided radiotherapy (IGRT) credentialing and margin reduction in clinical trials.

Methods And Materials: Images and IGRT shift results from three different treatment systems (Tomotherapy Hi-Art, Elekta Synergy, Varian Trilogy) have been sent from various institutions to the Image-Guided Therapy QA Center (ITC) for evaluation for the Radiation Therapy Oncology Group (RTOG) trials. Nine patient datasets (five head-and-neck and four prostate) were included in the comparison, with each patient having 1-4 daily individual IGRT studies.

View Article and Find Full Text PDF

This paper reviews systems and techniques to deliver simultaneous thermoradiotherapy of breast cancer. It first covers the clinical implementation of simultaneous delivery of superficial (microwave or ultrasound) hyperthermia and external photon beam radiotherapy, first using a Cobalt-60 teletherapy unit and later medical linear accelerators. The parallel development and related studies of the Scanning Ultrasound Reflector Linear Arrays System (SURLAS), an advanced system specifically designed and developed for simultaneous thermoradiotherapy, follows.

View Article and Find Full Text PDF

Purpose: Using a retrospective analysis of treatment plans submitted from multiple institutions accruing patients to the Radiation Therapy Oncology Group (RTOG) 0236 non-small-cell stereotactic body radiotherapy protocol, the present study determined the dose prescription and critical structure constraints for future stereotactic body radiotherapy lung protocols that mandate density-corrected dose calculations.

Method And Materials: A subset of 20 patients from four institutions participating in the RTOG 0236 protocol and using superposition/convolution algorithms were compared. The RTOG 0236 protocol required a prescription dose of 60 Gy delivered in three fractions to cover 95% of the planning target volume.

View Article and Find Full Text PDF

Ultrasound is an attractive modality for non-invasive imaging to monitor temperature of tumorous regions undergoing hyperthermia therapy. Previously, we predicted monotonic changes in backscattered energy (CBE) of ultrasound with temperature for certain sub-wavelength scatterers. We also measured CBE values similar to our predictions in bovine liver, turkey breast muscle, and pork rib muscle in both 1D and 2D in in vitro studies.

View Article and Find Full Text PDF

Ultrasound backscattered from tissue has previously been shown theoretically and experimentally to change predictably with temperature in the hyperthermia range, i.e., 37 degrees C to 45 degrees C, motivating use of the change in backscattered ultrasonic energy (CBE) for ultrasonic thermometry.

View Article and Find Full Text PDF

In this study, two effective, non-toxic, wind erosion palliative materials were analyzed for their efficacy in preventing the spread of bacterial spores. Desert sand was employed in a laboratory setting with a non-toxic simulant bacterium in an attempt to accurately represent the spreadability of the hantavirus. Spore simulants were used instead of viruses due to availability, decreased susceptibility to desiccation and detection ability without involving tissue cultures.

View Article and Find Full Text PDF

Noninvasive temperature imaging would enhance the ability to uniformly heat tumors at therapeutic levels. Ultrasound is an attractive modality for this purpose. Previously, we predicted monotonic changes in backscattered energy (CBE) of ultrasound with temperature for certain subwavelength scatterers.

View Article and Find Full Text PDF

A detailed description of a clinical grade Scanning Ultrasound Reflector Linear Array System (SURLAS) applicator was given in a previous paper [Med. Phys. 32, 230-240 (2005)].

View Article and Find Full Text PDF

A new ultrasound applicator with three-dimensional power distribution control was developed for simultaneous thermoradiotherapy. The system was named SURLAS for Scanning Ultrasound Reflector Linear Arrays System. In this paper, the hardware of the first clinical grade SURLAS applicator is described with emphasis on clinically important static acoustic characteristics and on construction aspects not reported before.

View Article and Find Full Text PDF

The presence of bone in the ultrasound beam path raises concerns, both in diagnostic and therapeutic applications, because significant temperature elevations may be induced at nearby soft tissue-bone interfaces due the facts that ultrasound is (i) highly absorbed in bone and (ii) reflected at soft tissue-bone interfaces in various degrees depending on angle of incidence. Consequently, in ultrasonic thermal therapy, the presence of bone in the ultrasound beam path is considered a major disadvantage and it is usually avoided. However, based on clinical experience and previous theoretical studies, we hypothesized that the presence of bone in superficial unfocused ultrasound hyperthermia can actually be exploited to induce more uniform and enhanced (with respect to the no-bone situation) temperature distributions in superficial target volumes.

View Article and Find Full Text PDF

To determine whether exposure to radiofrequency (RF) radiation can induce DNA damage or apoptosis, Molt-4 T lymphoblastoid cells were exposed with RF fields at frequencies and modulations of the type used by wireless communication devices. Four types of frequency/modulation forms were studied: 847.74 MHz code-division multiple-access (CDMA), 835.

View Article and Find Full Text PDF

This study was designed to determine whether chronic exposure to radiofrequency (RF) radiation from cellular phones increased the incidence of spontaneous tumors in F344 rats. Eighty male and 80 female rats were randomly placed in each of three irradiation groups. The sham group received no irradiation; the Frequency Division Multiple Access (FDMA) group was exposed to 835.

View Article and Find Full Text PDF

Hyperthermia has been used as a cancer treatment in which tumors are elevated to cytotoxic temperatures to aid in their control. A noninvasive method for volumetrically determining temperature distribution during treatment would greatly enhance the ability to uniformly heat tumors at therapeutic levels. Ultrasound is an attractive modality for this purpose.

View Article and Find Full Text PDF

To determine if radiofrequency (RF) radiation induces the formation of micronuclei, C3H 10T(1/2) cells were exposed to 835.62 MHz frequency division multiple access (FDMA) or 847.74 MHz code division multiple access (CDMA) modulated RF radiation.

View Article and Find Full Text PDF

A 745-bp luxA fragment was amplified from Vibrio harveyi (UM 1503), radiolabeled, and used as a probe to detect and quantify luxA genotypes in culturable bacterial populations from the Chesapeake Bay. DNA samples from 53 reference strains were also examined for this gene. The luxA-positive bacteria comprised from 0-6% of the culturable heterotrophic bacterial community in samples from the Bay.

View Article and Find Full Text PDF