Publications by authors named "William L Fitch"

The human pharmacokinetics, metabolism, and excretion of [C]-ganaxolone (GNX) were characterized in healthy male subjects ( = 8) following a single 300-mg (150 Ci) oral dose. GNX exhibited a short half-life of 4 hours in plasma, whereas total radioactivity had a half-life of 413 hours indicating extensive metabolism to long-lived metabolites. Identification of the major GNX circulating metabolites required extensive isolation and purification for liquid chromatography-tandem mass spectrometry analysis, together with in vitro studies, NMR spectroscopy, and synthetic chemistry support.

View Article and Find Full Text PDF

Mutations in the Leucine Rich Repeat Protein Kinase 2 gene (LRRK2) are the most common genetic causes of Parkinson's Disease (PD). The G2019S mutation is the most common inherited LRRK2 mutation, occurs in the kinase domain, and results in increased kinase activity. We report the discovery and development of compound 38, an indazole-based, G2019S-selective (>2000-fold vs.

View Article and Find Full Text PDF

The Lipid A family of glycolipids, found in the outer membranes of all Gram-negative bacteria, exhibits considerable structural diversity in both lipid and glycan moieties. The lack of facile methods to prepare analogues of these natural products represents a major roadblock in understanding the relationship between their structure and immunomodulatory activities. Here we present a modular, cell-free multienzymatic platform to access these structure-activity relationships.

View Article and Find Full Text PDF

Background: There is a continued need for improvements in the efficiency of metabolite structure elucidation.

Objective: We propose to take LC Retention Time (RT) into consideration during the process of structure determination.

Methods: Herein, we develop a simple methodology that employs a Chromatographic Hydrophobicity Index (CHI) framework for standardizing LC conditions and introduce and utilize the concept of a predictable CHI change upon Phase 1 biotransformation (CHIbt).

View Article and Find Full Text PDF

Rationale: A novel benzimidazole compound ZLN005 was previously identified as a transcriptional activator of peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) in certain metabolic tissues. Upregulation of PGC-1α by ZLN005 has been shown to have a beneficial effect in a diabetic mouse model and in a coronary artery disease model in vitro. ZLN005 could also have therapeutic potential in neurodegenerative diseases involving down-regulation of PGC-1α.

View Article and Find Full Text PDF

Background: In the perioperative period, anesthesiologists and postanesthesia care unit (PACU) nurses routinely prepare and administer small-volume IV injections, yet the accuracy of delivered medication volumes in this setting has not been described. In this ex vivo study, we sought to characterize the degree to which small-volume injections (≤0.5 mL) deviated from the intended injection volumes among a group of pediatric anesthesiologists and pediatric postanesthesia care unit (PACU) nurses.

View Article and Find Full Text PDF

According to Hanahan and Weinberg, cancer manifests as six essential physiologic hallmarks: (1) self-sufficiency in growth signals, (2) insensitivity to growth-inhibitory signals, (3) evasion of programmed cell death, (4) limitless replicative potential, (5) sustained angiogenesis, and (6) invasion and metastasis. As a facilitator of these traits as well as immunosuppression and chemoresistance, the presence of tumor-associated macrophages (TAMs) may serve as the seventh hallmark of cancer. Anticancer agents that successfully reprogram TAMs to target rather than support tumor cells may hold the key to better therapeutic outcomes.

View Article and Find Full Text PDF

Identification of singleton P2X7 inhibitor 1 from HTS gave a pharmacophore that eventually turned into potential clinical candidates 17 and 19. During development, a number of issues were successfully addressed, such as metabolic stability, plasma stability, GSH adduct formation, and aniline mutagenicity. Thus, careful modification of the molecule, such as conversion of the 1,4-dihydropyridinone to the 1,2-dihydropyridinone system, proper substitution at C-5″, and in some cases addition of fluorine atoms to the aniline ring allowed for the identification of a novel class of potent P2X7 inhibitors suitable for evaluating the role of P2X7 in inflammatory, immune, neurologic, or musculoskeletal disorders.

View Article and Find Full Text PDF

Background: Epigenetic alterations have been strongly associated with tumour formation and resistance to chemotherapeutic drugs, and epigenetic modifications are an attractive target in cancer research. RRx-001 is activated by hypoxia and induces the generation of reactive oxygen and nitrogen species that can epigenetically modulate DNA methylation, histone deacetylation, and lysine demethylation. The aim of this phase 1 study was to assess the safety, tolerability, and pharmacokinetics of RRx-001.

View Article and Find Full Text PDF

Background: Bioanalytical methods were required to study the novel anticancer drug, RRx-001 preclinically and for clinical pharmacokinetic analysis; however, RRx-001 quickly and completely disappeared on intravenous administration in preclinical species.

Results: Quantification of RRx-001 directly or by derivatization was unsuccessful. On exposure to whole blood, RRx-001 formed the glutathione (GSH) adduct very rapidly, suggesting this metabolite as the bioanalyte.

View Article and Find Full Text PDF

Rationale: Metabolomic profiling is a promising methodology of identifying candidate biomarkers for disease detection and monitoring. Although lung cancer is among the leading causes of cancer-related mortality worldwide, the lung tumor metabolome has not been fully characterized.

Methods: We utilized a targeted metabolomic approach to analyze discrete groups of related metabolites.

View Article and Find Full Text PDF

Background: Better pancreatic cyst fluid biomarkers are needed.

Objective: To determine whether metabolomic profiling of pancreatic cyst fluid would yield clinically useful cyst fluid biomarkers.

Design: Retrospective study.

View Article and Find Full Text PDF

Interspecies differences in drug metabolism have made it difficult to use preclinical animal testing data to predict the drug metabolites or potential drug-drug interactions (DDIs) that will occur in humans. Although chimeric mice with humanized livers can produce known human metabolites for test substrates, we do not know whether chimeric mice can be used to prospectively predict human drug metabolism or a possible DDI. Therefore, we investigated whether they could provide a more predictive assessment for clemizole, a drug in clinical development for the treatment of hepatitis C virus (HCV) infection.

View Article and Find Full Text PDF

Objective: To advance our understanding of disease biology, the characterization of the molecular target for clinically proven or new drugs is very important. Because of its simplicity and the availability of strains with individual deletions in all of its genes, chemogenomic profiling in yeast has been used to identify drug targets. As measurement of drug-induced changes in cellular metabolites can yield considerable information about the effects of a drug, we investigated whether combining chemogenomic and metabolomic profiling in yeast could improve the characterization of drug targets.

View Article and Find Full Text PDF

RRx-001 has shown promise as a novel cancer therapeutic agent. The disposition of RRx-001 was evaluated in vitro and after intravenous administration to rats. At both 24 and 168 h after a single intravenous administration of ¹⁴C-RRx-001 (10 mg/kg), the majority of radiolabel was in the blood.

View Article and Find Full Text PDF

Further investigation of the recently reported piperidine-4-yl-aminopyrimidine class of non-nucleoside reverse transcriptase inhibitors (NNRTIs) has been carried out. Thus, preparation of a series of N-phenyl piperidine analogs resulted in the identification of 3-carboxamides as a particularly active series. Analogs such as 28 and 40 are very potent versus wild-type HIV-1 and a broad range of NNRTI-resistant mutant viruses.

View Article and Find Full Text PDF

Imiloxan is an alpha2 adrenoceptor antagonist and was developed for depression in the 1980's. In Phase 1 clinical trials imiloxan dosing led to hypersensitivity reactions; the molecule's development was discontinued. The present study revisits the in vitro metabolism of imiloxan using modern analytical methods.

View Article and Find Full Text PDF

The microsomal metabolism of ketoconazole is revisited using accurate mass LC/MS(n) and deuterium labelling. Structures for sixteen metabolites are proposed from rat and human microsomal metabolism of commercial ketoconazole. Thirteen of the proposed structures are well determined and consistent with all data; five of the proposed structures are less certain.

View Article and Find Full Text PDF

Flutamide (FLU), a nonsteroidal antiandrogen drug widely used in the treatment of prostate cancer, has been associated with idiosyncratic hepatotoxicity in patients. It is proposed that bioactivation of FLU and subsequent binding of reactive metabolite(s) to cellular proteins play a causative role. A toxicogenomic study comparing FLU and its nitro to cyano analogue (CYA) showed that the nitroaromatic group of FLU enhanced cytotoxicity to hepatocytes, indicating that reduction of the nitroaromatic group may represent a potential route of FLU-induced hepatotoxicity [Coe et al.

View Article and Find Full Text PDF

Nevirapine, a non-nucleoside HIV-1 reverse transcriptase inhibitor, has been associated with incidences of skin rash and hepatotoxicity in patients. Although the mechanism of idiosyncratic hepatotoxicity remains unknown, it is proposed that metabolic activation of nevirapine and subsequent covalently binding of reactive metabolites to cellular proteins play a causative role. Studies were initiated to determine whether nevirapine undergoes cytochrome P450 (P450)-mediated bioactivation in human liver microsomes to electrophilic intermediates.

View Article and Find Full Text PDF

Background: Metabolic activation leading to formation of chemically reactive drug metabolites is a long-standing issue for drug development inasmuch as some, but not all, reactive intermediates play a role as mediators of drug-induced toxicities. The risk assessment profile/decision-making guide requires a comprehensive understanding of bioactivation mechanism(s), quantitative magnitude and cellular consequences of this principal and continued safety attrition.

Objective: To evaluate analytical methodologies with improved sensitivity, selectivity and throughput for the analysis of reactive metabolites.

View Article and Find Full Text PDF

The present study describes a new analytical approach for the detection and characterization of chemically reactive metabolites using glutathione ethyl ester (GSH-EE) as the trapping agent in combination with hybrid triple quadrupole linear ion trap mass spectrometry. Polarity switching was applied between a negative precursor ion (PI) survey scan and the positive enhanced product ion (EPI) scan. The negative PI scan step was carried out monitoring the anion at m/z 300, corresponding to deprotonated gamma-glutamyl-dehydroalanyl-glycine ethyl ester originating from the GSH-EE moiety.

View Article and Find Full Text PDF

Polarity switching mass spectrometry is an efficient way to collect structural data on drug metabolites. The value of this approach is illustrated with the in vitro metabolism of RO9237. Metabolites are identified by positive and negative electrospray ionization (ESI) full scan mass spectrometry, MS/MS and MS(3) using unlabelled and (14)C-radiolabelled versions of the drug.

View Article and Find Full Text PDF

Determination of the chemical structures of metabolites is a critical part of the early pharmaceutical discovery process. Understanding the structures of metabolites is useful both for optimizing the metabolic stability of a drug as well as rationalizing the drug safety profile. This review describes the current state of the art in this endeavor.

View Article and Find Full Text PDF

The metabolic fate of three aromatic carboxylic acid analogs under evaluation as prostaglandin I2-preferring receptor antagonists was studied. The initial analog with unsubstituted phenyl groups was subject to a complex set of aromatic oxidative biotransformations. By introduction of one or two fluorines, these pathways were inhibited.

View Article and Find Full Text PDF