Philos Trans A Math Phys Eng Sci
December 2024
Room-temperature cavity quantum electrodynamics with molecular materials in optical cavities offers exciting prospects for controlling electronic, nuclear and photonic degrees of freedom for applications in physics, chemistry and materials science. However, achieving strong coupling with molecular ensembles typically requires high molecular densities and substantial electromagnetic-field confinement. These conditions usually involve a significant degree of molecular disorder and a highly structured photonic density of states.
View Article and Find Full Text PDFMolecular strong coupling offers exciting prospects in physics, chemistry, and materials science. While attention has been focused on developing realistic models for the molecular systems, the important role played by the entire photonic mode structure of the optical cavities has been less explored. We show that the effectiveness of molecular strong coupling may be critically dependent on cavity finesse.
View Article and Find Full Text PDFWe provide a simple method that enables readily acquired experimental data to be used to predict whether or not a candidate molecular material may exhibit strong coupling. Specifically, we explore the relationship between the hybrid molecular/photonic (polaritonic) states and the bulk optical response of the molecular material. For a given material, this approach enables a prediction of the maximum extent of strong coupling (vacuum Rabi splitting), irrespective of the nature of the confined light field.
View Article and Find Full Text PDFStrong coupling between light and molecules is a fascinating topic exploring the implications of the hybridization of photonic and molecular states. For example, many recent experiments have explored the possibility that strong coupling of photonic and vibrational modes might modify chemical reaction rates. In these experiments, reactants are introduced into a planar cavity, and the vibrational mode of a chemical bond strongly couples to one of the many photonic modes supported by the cavity.
View Article and Find Full Text PDFThe strong coupling of light and molecules offers a potential new pathway to modify the properties of photonic modes and molecules. There are many reasons to be optimistic about the prospects of strong coupling; however, progress in this field is currently hindered by challenges in reproducibility, problems associated with differentiating between strong coupling and other effects, and the lack of a clear theoretical model to describe the reported effects. Concerning the question of differentiating between strong coupling and other possible mechanisms when examining experimental data, here, we show how cognitive bias can lead us to place undue emphasis on a given interpretation of unsystematic experimental data.
View Article and Find Full Text PDFStrong coupling of molecules to vacuum fields is widely reported to lead to modified chemical properties such as reaction rates. However, some recent attempts to reproduce infrared strong coupling results have not been successful, suggesting that factors other than strong coupling may sometimes be involved. In the first vacuum-modified chemistry experiment, changes to a molecular photoisomerization process in the ultraviolet-visible spectral range are attributed to strong coupling of the molecules to visible light.
View Article and Find Full Text PDFStrong coupling of molecular vibrations with light creates polariton states, enabling control over many optical and chemical properties. However, the near-field signatures of strong coupling are difficult to map as most cavities are closed systems. Surface-enhanced Raman microscopy of open metallic gratings under vibrational strong coupling enables the observation of spatial polariton localization in the grating near field, without the need for scanning probe microscopies.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
November 2022
Strong light-matter coupling hybridizes light and matter to form states known as polaritons, which give rise to a characteristic anticrossing signature in dispersion plots. Here, we identify conditions under which an anticrossing can occur in the absence of strong coupling. We study planar silver/dielectric structures and find that, around the epsilon-near-zero point in silver, the impedance matching between the silver and dielectric layers gives rise to an anticrossing.
View Article and Find Full Text PDFThe strong coupling of molecules with surface plasmons results in hybrid states which are part molecule, part surface-bound light. Since molecular resonances may acquire the spatial coherence of plasmons, which have mm-scale propagation lengths, strong-coupling with molecular resonances potentially enables long-range molecular energy transfer. Gratings are often used to couple incident light to surface plasmons, by scattering the otherwise non-radiative surface plasmon inside the light-line.
View Article and Find Full Text PDFThe emergence of dielectric open optical cavities has opened a new research avenue in nanophotonics. In particular, dielectric microspheres support a rich set of cavity modes with varying spectral characteristics, making them an ideal platform to study molecule-cavity interactions. The symmetry of the structure plays a critical role in the outcoupling of these modes and, hence, the perceived molecule-cavity coupling strength.
View Article and Find Full Text PDFStrong light-matter coupling occurs when the rate of energy exchange between an electromagnetic mode and a molecular ensemble exceeds competing dissipative processes. The study of strong coupling has been motivated by applications such as lasing and the modification of chemical processes. Here we show that strong coupling can be used to create phase singularities.
View Article and Find Full Text PDFIn computational ghost imaging, the object is illuminated with a sequence of known patterns and the scattered light is collected using a detector that has no spatial resolution. Using those patterns and the total intensity measurement from the detector, one can reconstruct the desired image. Here we study how the reconstructed image is modified if the patterns used for the illumination are not the same as the reconstruction patterns and show that one can choose how to illuminate the object, such that the reconstruction process behaves like a spatial filtering operation on the image.
View Article and Find Full Text PDFCan we couple multiple molecular species to soft cavities? The answer to this question has relevance in designing open cavities for polaritonic chemistry applications. Because of the differences in adhesiveness, it is difficult to couple multiple molecular species to open cavities in a controlled and precise manner. In this Letter, we discuss the procedure to coat multiple dyes, TDBC and S2275, onto a dielectric microsphere using a layer-by-layer deposition technique so as to facilitate the multimolecule coupling.
View Article and Find Full Text PDFThe formation of polariton modes due to the strong coupling of light and matter has led to exciting developments in physics, chemistry, and materials science. The potential to modify the properties of molecular materials by strongly coupling molecules to a confined light field is so far-reaching and so attractive that a new field known as "polaritonic chemistry" is now emerging. However, the molecular scale of the materials involved makes probing strong coupling at the individual resonator level extremely challenging.
View Article and Find Full Text PDFThe way molecules absorb, transfer, and emit light can be modified by coupling them to optical cavities. The extent of the modification is often defined by the cavity-molecule coupling strength, which depends on the number of coupled molecules. We experimentally and numerically study the evolution of photoemission from a thin layered J-aggregated molecular material strongly coupled to a Fabry-Perot microcavity as a function of the number of coupled layers.
View Article and Find Full Text PDFStrong coupling between light and matter can occur when the interaction strength between a confined electromagnetic field and a molecular resonance exceeds the losses to the environment, leading to the formation of hybrid light-matter states known as polaritons. Ultrastrong coupling occurs when the coupling strength becomes comparable to the transition energy of the system. It is widely assumed that the confined electromagnetic fields necessary for strong coupling to organic molecules can only be achieved with external structures such as Fabry-Pérot resonators, plasmonic nanostructures, or dielectric resonators.
View Article and Find Full Text PDFNonlinear optical devices and their implementation into modern nanophotonic architectures are constrained by their usually moderate nonlinear response. Recently, epsilon-near-zero (ENZ) materials have been found to have a strong optical nonlinearity, which can be enhanced through the use of cavities or nano-structuring. Here, we study the pump dependent properties of the plasmon resonance in the ENZ region in a thin layer of indium tin oxide (ITO).
View Article and Find Full Text PDFStrong coupling between surface plasmons and molecular excitons may lead to the formation of new hybrid states-polaritons-that are part light and part matter in character. A key signature of this strong coupling is an anti-crossing of the exciton and surface plasmon modes on a dispersion diagram. In a recent report on strong coupling between the plasmon modes of a small silver nano-rod and a molecular dye, it was shown that when the oscillator strength of the exciton is large enough, an additional anti-crossing feature may arise in the spectral region where the real part of the permittivity of the excitonic material is zero.
View Article and Find Full Text PDFStrong coupling of molecules placed in an optical microcavity may lead to the formation of hybrid states called polaritons; states that inherit characteristics of both the optical cavity modes and the molecular resonance. Developing a better understanding of the matter characteristics of these hybrid states has been the focus of much recent attention. Here, as we will show, a better understanding of the role of the optical modes supported by typical cavity structures is also required.
View Article and Find Full Text PDFLight-matter interactions can occur when an ensemble of molecular resonators is placed in a confined electromagnetic field. In the strong coupling regime the rapid exchange of energy between the molecules and the electromagnetic field results in the emergence of hybrid light-matter states called polaritons. Multiple criteria exist to define the strong coupling regime, usually by comparing the splitting of the polariton bands with the line widths of the uncoupled modes.
View Article and Find Full Text PDFWe report strong coupling of a monolayer of J-aggregated dye molecules to the whispering gallery modes of a dielectric microsphere at room temperature. We systematically studied the evolution of strong coupling as the number of layers of dye molecules was increased and found the Rabi splitting to rise from 56 meV for a single layer to 94 meV for four layers of dye molecules. We compare our experimental results with two-dimensional (2D) numerical simulations and a simple coupled oscillator model, finding good agreement.
View Article and Find Full Text PDFMolecular aggregates are a fascinating and important class of materials, particularly in the context of optical (pigmented) materials. In nature, molecular aggregates are employed in photosynthetic light harvesting structures, while synthetic aggregates are employed in new generation molecular sensors and magnets. The roles of disorder and symmetry are vital in determining the photophysical properties of molecular aggregates, but have been hard to investigate experimentally, owing to a lack of sufficient structural control at the molecular level and the challenge of probing their optical response with molecular spatial resolution.
View Article and Find Full Text PDFWe investigate the optimum emitter position within reflecting parabolic antennas whose size is comparable to the emission wavelength. Using finite-element modeling we calculate the dependence of the amount of power directed into a 20° half-angle cone on the emitter's position and compare with results obtained using geometrical optics. The spatially varying density of states within the wavelength-scale reflector is mapped and its impact discussed.
View Article and Find Full Text PDF