Secondary organic aerosol (SOA) is a major component of atmospheric fine particle mass. Intermediate-volatility organic compounds (IVOCs) have been proposed to be an important source of SOA. We present a comprehensive analysis of atmospheric IVOC concentrations and their SOA production using measurements made in Pasadena, California during the California at the Nexus of Air Quality and Climate Change (CalNex) study.
View Article and Find Full Text PDFPhotolabile nighttime radical reservoirs, such as nitrous acid (HONO) and nitryl chloride (ClNO(2)), contribute to the oxidizing potential of the atmosphere, particularly in early morning. We present the first vertically resolved measurements of ClNO(2), together with vertically resolved measurements of HONO. These measurements were acquired during the California Nexus (CalNex) campaign in the Los Angeles basin in spring 2010.
View Article and Find Full Text PDF2-Methyl-3-buten-2-ol (MBO) is an important biogenic volatile organic compound (BVOC) emitted by pine trees and a potential precursor of atmospheric secondary organic aerosol (SOA) in forested regions. In the present study, hydroxyl radical (OH)-initiated oxidation of MBO was examined in smog chambers under varied initial nitric oxide (NO) and aerosol acidity levels. Results indicate measurable SOA from MBO under low-NO conditions.
View Article and Find Full Text PDFWe measured isocyanic acid (HNCO) in laboratory biomass fires at levels up to 600 parts per billion by volume (ppbv), demonstrating that it has a significant source from pyrolysis/combustion of biomass. We also measured HNCO at mixing ratios up to 200 pptv (parts-per-trillion by volume) in ambient air in urban Los Angeles, CA, and in Boulder, CO, during the recent 2010 Fourmile Canyon fire. Further, our measurements of aqueous solubility show that HNCO is highly soluble, as it dissociates at physiological pH.
View Article and Find Full Text PDFIt is important to identify the sources of reactive volatile organic compounds (VOCs) in Beijing for effective ground-level ozone abatement. In this paper, semihourly measurements of hydrocarbons and oxygenated VOCs (OVOCs) were taken at an urban site in Beijing in August2005. C2-C5 alkenes, isoprene, and C1-C3 aldehydes were determined as "key reactive species" by their OH loss rates.
View Article and Find Full Text PDFIdentifying the sources of volatile organic compounds (VOCs) is key to reducing ground-level ozone and secondary organic aerosols (SOAs). Several receptor models have been developed to apportion sources, but an intercomparison of these models had not been performed for VOCs in China. In the present study, we compared VOC sources based on chemical mass balance (CMB), UNMIX, and positive matrix factorization (PMF) models.
View Article and Find Full Text PDFEnviron Sci Technol
June 2007
The ambient air quality standard for ozone is frequently exceeded in Beijing in summer and autumn. Source apportionments of volatile organic compounds (VOCs), which are precursors of ground-level ozone formation, can be helpful to the further study of tropospheric ozone formation. In this study, ambient concentrations of VOCs were continuously measured with a time resolution of 30 min in August 2005 in Beijing.
View Article and Find Full Text PDFWe have used a newly developed proton-transfer ion-trap mass spectrometry (PIT-MS) instrument for online trace gas analysis of volatile organic compounds (VOCs) during the 2004 New England Air Quality Study-Intercontinental Transport and Chemical Transformation study. The PIT-MS instrument uses proton-transfer reactions with H3O+ ions to ionize VOCs, similarto a PTR-MS (proton-transfer reaction mass spectrometry) instrument but uses an ion trap mass spectrometer to analyze the product ions. The advantages of an ion trap are the improved identification of VOCs and a near 100% duty cycle.
View Article and Find Full Text PDFLaser photoacoustic spectroscopy (LPAS) is highly suitable for the detection of ethene in air due to the overlap between its strongest absorption lines and the wavelengths accessible by high-powered CO2 lasers. Here, we test the ability of LPAS to measure ethene in ambient air by comparing the measurements in urban air with those from a gas chromatography flame-ionization detection (GC-FID) instrument. Over the course of several days, we obtained quantitative agreement between the two measurements.
View Article and Find Full Text PDFThe 1990 Clean Air Act Amendments required the United States Environmental Protection Agency (U.S. EPA) to enact stricter regulations aimed at reducing benzene emissions.
View Article and Find Full Text PDFPlant roots release about 5% to 20% of all photosynthetically-fixed carbon, and as a result create a carbon-rich environment for numerous rhizosphere organisms, including plant pathogens and symbiotic microbes. Although some characterization of root exudates has been achieved, especially of secondary metabolites and proteins, much less is known about volatile organic compounds (VOCs) released by roots. In this communication, we describe a novel approach to exploring these rhizosphere VOCs and their induction by biotic stresses.
View Article and Find Full Text PDFProton-transfer-reaction mass spectrometry (PTR-MS) has emerged as a useful tool to study volatile organic compounds (VOCs) in the atmosphere. In PTR-MS, proton-transfer reactions with H30+ ions are used to ionize and measure VOCs in air with a high sensitivity and fast time response. Only the masses of the ionized VOCs and their fragments, if any, are determined, and these product ions are not unique indicators of VOC identities.
View Article and Find Full Text PDF